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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Operators in end-of-line testing of assembly lines often try out multiple solutions until they can solve a product quality issue. This calls for a 

decision support system based on data analytics that effectively helps operators in fault diagnosis and quality control. However, existing analytical 

approaches do not consider the specific data characteristics being prevalent in the area of End-of-Line (EoL) testing. We address this issue by 

proposing an analytical approach that is tailored to EoL testing. We show how to implement this approach in a real-world use case of a large 

automotive manufacturer, which reveals its potential to reduce unnecessary rework. 
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1. Introduction 

Already in 2004, vehicle manufacturers spent more than 

1.000€ per vehicle for reworking on or even scrapping 

erroneous product parts during quality control [1]. Considering 

the total number of manufactured vehicles, one original 

equipment manufacturer (OEM) wasted several millions for 

such error costs. Based on an error cost analysis at an industry 

partner, we revealed that these costs are even much higher 

today. This is mainly due to substantial increases in complexity 

and variety of both products and production processes. 

In particular, the final phase of the production process, the 

End-of-Line (EoL) testing, is very complex and cost-intensive 

[2]. Due to misdiagnoses, operators usually carry out several 

expensive repair attempts and re-tests until they can solve a 

quality issue. This calls for a decision support system based on 

data analytics that increases the efficiency of operators in fault 

diagnosis and quality control. 

Existing analytical approaches do not take into account the 

data characteristics and related analytical challenges that are 

prevalent in the area of EoL testing. Most related approaches 

are struggling with two major shortcomings, which are 

considerably limiting practical feasibility. Firstly, they usually 

assume a holistic data warehouse that provides huge amounts 

of high-quality data (e.g., [3,4]). However, the amount and 

quality of data is significantly limited in the EoL domain. This 

limited data set often shows a high complexity in real-world 

applications, as the data describes a heterogeneous product 

space and a wide range of unevenly distributed quality issues. 

Secondly, related work does not offer any means to evaluate 

and adapt the results of data analytics considering economical 

aspects (e.g., [4,5]). However, this is necessary to reduce costs 

for fault diagnosis and reworking, especially in EoL testing.  

To address these issues, we propose an analytical approach 

as a blueprint for increasing the efficiency in the domain of EoL 

testing. The major contributions of this paper are: 

• We propose an analytical approach that considers the 

domain-specific data characteristics and challenges of EoL 

testing. This approach provides a tailored decision support 

that effectively helps operators in fault diagnosis and quality 

control. It offers them a small list of faulty parts that are 

ranked according to their likelihood of being the cause of a 

quality issue. Furthermore, the faulty parts are evaluated 
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regarding their economical relevance. Altogether, this offers 

a great potential to reduce both the number and costs of 

rework steps caused by misdiagnoses. 

• We show how to use the results of this enhanced fault 

diagnosis in EoL testing to effectively monitor the upstream 

assembly line. This allows for an early identification and 

evaluation of problems occurring in the assembly. 

The remainder of this paper is structured as follows: In 

Section 2, we survey the domain of EoL testing and discuss 

prevalent data characteristics, as well as corresponding 

challenges for a domain-specific analytical approach. In 

Section 3, we discuss related work and their limitations 

regarding the considered domain. In Section 4, we present our 

approach to support operators in their fault diagnosis during 

EoL testing, as well as to draw the right conclusions for 

improving the assembly line. Section 5 focuses on our 

prototype and on the corresponding validation of our approach. 

We conclude in Section 6 and list possible future work. 

2. Analytics and Characteristics in End-of-Line Testing 

In this section, we present background information 

regarding EoL testing (2.1) and discuss the underlying data 

characteristics and the resulting analytical challenges (2.2). 

 End-of-Line Testing in the Automotive Industry 

For OEMs, EoL testing is an important part of total quality 

control and represents the final functional check of assembled 

products. It simulates real operating environments under 

reproducible conditions in order to determine whether a 

product performs its function within predefined tolerances. 

Thereby, the product goes through a test bench that measures 

values of various sensors, e.g., power, pressure, or temperature. 

To pass an EoL test, all values measured by key sensors 

must comply with the tolerances specified in the testing 

scheme. In case of limit violations, a product fails the test, i.e., 

it is declared as defective. Before such a defective product is 

scrapped, operators carry out repair attempts in a rework step 

and try to solve the quality issue. Thereby, the operators’ most 

challenging task is to perform a fault diagnosis, to identify the 

faulty part that has to be repaired or replaced. The only 

available information they have are symptoms in the form of 

suspicious sensor values. Thus, the fault diagnosis and rework 

highly depends on the operators’ subjective knowledge 

regarding the causes of these suspicious sensor values. Usually, 

they carry out up to four repair attempts and re-tests until they 

can solve a particular quality issue or until they scrap the 

product after all. Thereby, the chance of misdiagnosis increases 

with the complexity of the product. Powertrain aggregates, for 

instance, usually require multiple repair attempts. This is 

because they consist of numerous interdependent parts, 

resulting in a high product complexity. Hence, operators’ waste 

a substantial amount of time on fault diagnosis and on carrying 

out ineffective repair attempts. 

 Data Characteristics and Analytical Challenges 

We want to support the operators in their fault diagnosis by 

offering them a small list of most likely faulty parts. We create 

this list via data analytics by using data mining methods. 

Fig. 1 shows the process of applying data analytics for a 

decision support. The input of the process are historical source 

data, which need to be prepared and preprocessed before they 

can actually be used for data analytics. Data preparation 

includes steps for extracting relevant data from the sources, 

cleaning these data to increase their quality, and integrating the 

data into one common view (prepared data set). The 

preprocessing step transform the prepared data into a suitable 

format to apply analytics on it. The descriptions of the data 

sources are given below. In the subsequent training phase, the 

preprocessed data is divided into two parts: the training data 

and the testing data. The training data serves as input for data 

mining algorithms (e.g., C4.5 [6] for classification). The output 

of such an algorithm is a data mining model, whose 

performance is then evaluated by applying the model to the 

testing data. If the model performance is insufficient, the 

training data and/or the data mining algorithm need be adjusted 

and applied again. Otherwise, the model can finally be applied 

to productive data in order to perform the actual prediction or 

recommendation task. In our case, we apply the final model to 

recommend the top k faulty parts, this way supporting an 

operator in his/her fault diagnosis. 

Fig. 1. Process of Data Analytics for Decision Support. 

A representative use case to describe the prevalent data 

characteristics in the EoL testing area are engines for trucks. 

Engines are complex aggregates, with different construction 

types and a wide range of possible root causes for quality 

issues. For this reason, these aggregates also have a complex 

test setup, with numerous sensors in different torque levels. 

We have collected the data from different data sources of a 

large automotive OEM: Engine data, test bench data, and 

diagnosis data. 

• Engine: This data originates from an Enterprise-Resource-

Planning (ERP) system for production planning. It includes 

IDs for the tested engines with their product specifications, 

such as a construction type describing technical properties 

like the engine’s power. This data source includes more than 

90 different construction types for 330 thousand engines. 
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• Test bench: This data originates from a test bench software 

and describes the test runs for engines. This means, it 

includes all test runs with the testing schema, values of 

different sensors, and the pass/fail decision. Data cleaning 

comprises steps for selecting failed test runs only and 

eliminating inconsistent data, such as negative values for the 

power sensor. This cleaning step significantly reduces the 

final amount of data, especially because the original data set 

consists of a high amount of inconsistent data. In the 

considered use case, for example, the final amount of data is 

reduced to only 2.7% of all test runs. 

• Diagnosis: This data originates from a quality management 

system for recording product errors in assembly. Each entry 

includes the affected engine, the relevant stations in the 

assembly, and the detected error. The detected error 

describes the faulty part, which is encoded by an error code. 

Data cleaning comprises steps for filtering error codes of 

stations that are relevant to EoL rework. Furthermore, only 

meaningful error codes are of interest. For instance, error 

codes like “engine broken” are excluded, as they do not 

provide any valuable information for fault diagnosis. After 

cleaning and integration, less than 1% instances remain. 

Diagnostic data can only be assigned to products, but not to test 

runs. This makes it difficult to find data entries in all three data 

sources that belong together and that may thus be integrated 

into the input of data analytics. In fact, this data integration has 

to be based on logical assumptions, again reducing the final 

amount of data to around one thousand data entries. These 

entries comprise 123 relevant error codes. Thereby, top 10 error 

codes represent approximately 40% of all available instances, 

leading to an extremely uneven distribution of error codes 

among the data. 

Based on these data characteristics, we can derive the following 

challenges for developing data analytics solutions: 

• C1: The first challenge arises from using historically grown 

and proprietary data sources, which can only be partially 

linked together. For this reason, both the amount and quality 

of data serving as input for data analytics is limited. 

However, data analytics requires a minimum number and 

quality of data to produce reliable analytical results. 

• C2: Our second challenge results from the heterogeneous 

product space in our data, represented by the 90 different 

construction types of engines. From an analytical 

perspective, we have different facts (i.e., different sensors) 

in our data, which must be treated separately. Therefore, 

each construction requires one separate analytical model. 

• C3: Our third challenge is related to the goal of building 

reliable analytical models based on our data characteristics. 

We have only few usable data with numerous error codes, 

which are the classes we want to predict with our final 

model. These error codes are unevenly distributed and, thus, 

the data is biased in favor of the top 10 error codes. 

3. Data Mining and its Limitation in Manufacturing 

Based on a literature survey of existing data mining reviews 

in manufacturing [7–11], we identified research gaps that are 

relevant to the data characteristics and analytical challenges 

described in the previous section. Table 1 shows the allocation 

of these research gaps to the related analytical challenges. 

• RG1: A multiplicity of approaches propose a holistic data 

warehouse, without addressing the data sources with their 

inherent characteristics of the manufacturing domain. This 

especially holds for the data of the EoL testing area. 

• RG2: For most approaches, the prediction of classes is 

limited to two classes: OK vs. not OK. Our data set however 

comprises a total amount of 123 error codes representing the 

classes. This restricts the selection of classification methods. 

In particular, these methods and resulting classification 

models must be able to deal with a multiplicity of classes 

and provide probabilistic results in order to get a top k list. 

• RG3: During model evaluation, most related approaches try 

to maximize the classification accuracy by comparing 

different algorithms against each other. They however do 

not consider scenarios, where classes – in our case error 

codes – are distributed unevenly in the data. This means that 

most of these error codes are described by a relatively small 

amount of data. Usually, related approaches only 

recommend classes that belong to the small set that is 

represented in the majority of the data (the top 10 error codes 

in our case). Depending on the objective, it may however be 

important to suggest also seldom error codes. Furthermore, 

none of the approaches considers economic aspects of the 

prediction results from a business perspective. 

• RG4: No approach adequately considers the analytical 

skills of the involved users, especially with respect to users 

from manufacturing. Hence, these users have difficulties to 

use corresponding analytical systems and to get the desired 

results. Thereby, the most tedious task is the selection of the 

correct model to be applied, as well as the regular update of 

this model. Challenge C2 refers to this gap, since the 

increased complexity through the heterogeneous product 

space results in a multiplicity of different models. 

In addition to the reviews, we have examined three 

implemented system approaches. These approaches are 

designed to support human experts in their decision making for 

quality-related tasks. Table 1 shows to what extent the 

approaches meet the research gaps, respectively the challenges. 

Table 1. Research gaps and challenges met by related approaches. 

Research 

Gap 

References Challenges Examined Approaches 

C1 C2 C3 [4] [5] [3] 

RG1 [7–10]  - - ◑ ◑ ○ 

RG2 [7,9,10] - -  ○ ● ○ 

RG3 [7,9,10] - -  ○ ○ - 

RG4 [7–11] -  - ◑ ◑ ◑ 
: Challenge related to research gap | ●/◑/○: Research gap completely/partially/not fulfilled 

The Advanced Manufacturing Analytics (AdMA) platform 

focuses on optimizing manufacturing processes through 

adjustments of process characteristics [4]. The AdMA platform 

proposes a general and holistic data warehouse that only 

integrates data from well-defined information systems (e.g., 

from an ERP). However, it does not address the complex data 

characteristics that are inherent in manufacturing (RG1). 

Furthermore, the data mining task is only a two-class 
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regarding their economical relevance. Altogether, this offers 

a great potential to reduce both the number and costs of 

rework steps caused by misdiagnoses. 

• We show how to use the results of this enhanced fault 

diagnosis in EoL testing to effectively monitor the upstream 

assembly line. This allows for an early identification and 

evaluation of problems occurring in the assembly. 

The remainder of this paper is structured as follows: In 

Section 2, we survey the domain of EoL testing and discuss 

prevalent data characteristics, as well as corresponding 

challenges for a domain-specific analytical approach. In 

Section 3, we discuss related work and their limitations 

regarding the considered domain. In Section 4, we present our 

approach to support operators in their fault diagnosis during 

EoL testing, as well as to draw the right conclusions for 

improving the assembly line. Section 5 focuses on our 

prototype and on the corresponding validation of our approach. 

We conclude in Section 6 and list possible future work. 

2. Analytics and Characteristics in End-of-Line Testing 

In this section, we present background information 

regarding EoL testing (2.1) and discuss the underlying data 

characteristics and the resulting analytical challenges (2.2). 

 End-of-Line Testing in the Automotive Industry 

For OEMs, EoL testing is an important part of total quality 

control and represents the final functional check of assembled 

products. It simulates real operating environments under 

reproducible conditions in order to determine whether a 

product performs its function within predefined tolerances. 

Thereby, the product goes through a test bench that measures 

values of various sensors, e.g., power, pressure, or temperature. 

To pass an EoL test, all values measured by key sensors 

must comply with the tolerances specified in the testing 

scheme. In case of limit violations, a product fails the test, i.e., 

it is declared as defective. Before such a defective product is 

scrapped, operators carry out repair attempts in a rework step 

and try to solve the quality issue. Thereby, the operators’ most 

challenging task is to perform a fault diagnosis, to identify the 

faulty part that has to be repaired or replaced. The only 

available information they have are symptoms in the form of 

suspicious sensor values. Thus, the fault diagnosis and rework 

highly depends on the operators’ subjective knowledge 

regarding the causes of these suspicious sensor values. Usually, 

they carry out up to four repair attempts and re-tests until they 

can solve a particular quality issue or until they scrap the 

product after all. Thereby, the chance of misdiagnosis increases 

with the complexity of the product. Powertrain aggregates, for 

instance, usually require multiple repair attempts. This is 

because they consist of numerous interdependent parts, 

resulting in a high product complexity. Hence, operators’ waste 

a substantial amount of time on fault diagnosis and on carrying 

out ineffective repair attempts. 

 Data Characteristics and Analytical Challenges 

We want to support the operators in their fault diagnosis by 

offering them a small list of most likely faulty parts. We create 

this list via data analytics by using data mining methods. 

Fig. 1 shows the process of applying data analytics for a 

decision support. The input of the process are historical source 

data, which need to be prepared and preprocessed before they 

can actually be used for data analytics. Data preparation 

includes steps for extracting relevant data from the sources, 

cleaning these data to increase their quality, and integrating the 

data into one common view (prepared data set). The 

preprocessing step transform the prepared data into a suitable 

format to apply analytics on it. The descriptions of the data 

sources are given below. In the subsequent training phase, the 

preprocessed data is divided into two parts: the training data 

and the testing data. The training data serves as input for data 

mining algorithms (e.g., C4.5 [6] for classification). The output 

of such an algorithm is a data mining model, whose 

performance is then evaluated by applying the model to the 

testing data. If the model performance is insufficient, the 

training data and/or the data mining algorithm need be adjusted 

and applied again. Otherwise, the model can finally be applied 

to productive data in order to perform the actual prediction or 

recommendation task. In our case, we apply the final model to 

recommend the top k faulty parts, this way supporting an 

operator in his/her fault diagnosis. 

Fig. 1. Process of Data Analytics for Decision Support. 

A representative use case to describe the prevalent data 

characteristics in the EoL testing area are engines for trucks. 

Engines are complex aggregates, with different construction 

types and a wide range of possible root causes for quality 

issues. For this reason, these aggregates also have a complex 

test setup, with numerous sensors in different torque levels. 

We have collected the data from different data sources of a 

large automotive OEM: Engine data, test bench data, and 

diagnosis data. 

• Engine: This data originates from an Enterprise-Resource-

Planning (ERP) system for production planning. It includes 

IDs for the tested engines with their product specifications, 

such as a construction type describing technical properties 

like the engine’s power. This data source includes more than 

90 different construction types for 330 thousand engines. 
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• Test bench: This data originates from a test bench software 

and describes the test runs for engines. This means, it 

includes all test runs with the testing schema, values of 

different sensors, and the pass/fail decision. Data cleaning 

comprises steps for selecting failed test runs only and 

eliminating inconsistent data, such as negative values for the 

power sensor. This cleaning step significantly reduces the 

final amount of data, especially because the original data set 

consists of a high amount of inconsistent data. In the 

considered use case, for example, the final amount of data is 

reduced to only 2.7% of all test runs. 

• Diagnosis: This data originates from a quality management 

system for recording product errors in assembly. Each entry 

includes the affected engine, the relevant stations in the 

assembly, and the detected error. The detected error 

describes the faulty part, which is encoded by an error code. 

Data cleaning comprises steps for filtering error codes of 

stations that are relevant to EoL rework. Furthermore, only 

meaningful error codes are of interest. For instance, error 

codes like “engine broken” are excluded, as they do not 

provide any valuable information for fault diagnosis. After 

cleaning and integration, less than 1% instances remain. 

Diagnostic data can only be assigned to products, but not to test 

runs. This makes it difficult to find data entries in all three data 

sources that belong together and that may thus be integrated 

into the input of data analytics. In fact, this data integration has 

to be based on logical assumptions, again reducing the final 

amount of data to around one thousand data entries. These 

entries comprise 123 relevant error codes. Thereby, top 10 error 

codes represent approximately 40% of all available instances, 

leading to an extremely uneven distribution of error codes 

among the data. 

Based on these data characteristics, we can derive the following 

challenges for developing data analytics solutions: 

• C1: The first challenge arises from using historically grown 

and proprietary data sources, which can only be partially 

linked together. For this reason, both the amount and quality 

of data serving as input for data analytics is limited. 

However, data analytics requires a minimum number and 

quality of data to produce reliable analytical results. 

• C2: Our second challenge results from the heterogeneous 

product space in our data, represented by the 90 different 

construction types of engines. From an analytical 

perspective, we have different facts (i.e., different sensors) 

in our data, which must be treated separately. Therefore, 

each construction requires one separate analytical model. 

• C3: Our third challenge is related to the goal of building 

reliable analytical models based on our data characteristics. 

We have only few usable data with numerous error codes, 

which are the classes we want to predict with our final 

model. These error codes are unevenly distributed and, thus, 

the data is biased in favor of the top 10 error codes. 

3. Data Mining and its Limitation in Manufacturing 

Based on a literature survey of existing data mining reviews 

in manufacturing [7–11], we identified research gaps that are 

relevant to the data characteristics and analytical challenges 

described in the previous section. Table 1 shows the allocation 

of these research gaps to the related analytical challenges. 

• RG1: A multiplicity of approaches propose a holistic data 

warehouse, without addressing the data sources with their 

inherent characteristics of the manufacturing domain. This 

especially holds for the data of the EoL testing area. 

• RG2: For most approaches, the prediction of classes is 

limited to two classes: OK vs. not OK. Our data set however 

comprises a total amount of 123 error codes representing the 

classes. This restricts the selection of classification methods. 

In particular, these methods and resulting classification 

models must be able to deal with a multiplicity of classes 

and provide probabilistic results in order to get a top k list. 

• RG3: During model evaluation, most related approaches try 

to maximize the classification accuracy by comparing 

different algorithms against each other. They however do 

not consider scenarios, where classes – in our case error 

codes – are distributed unevenly in the data. This means that 

most of these error codes are described by a relatively small 

amount of data. Usually, related approaches only 

recommend classes that belong to the small set that is 

represented in the majority of the data (the top 10 error codes 

in our case). Depending on the objective, it may however be 

important to suggest also seldom error codes. Furthermore, 

none of the approaches considers economic aspects of the 

prediction results from a business perspective. 

• RG4: No approach adequately considers the analytical 

skills of the involved users, especially with respect to users 

from manufacturing. Hence, these users have difficulties to 

use corresponding analytical systems and to get the desired 

results. Thereby, the most tedious task is the selection of the 

correct model to be applied, as well as the regular update of 

this model. Challenge C2 refers to this gap, since the 

increased complexity through the heterogeneous product 

space results in a multiplicity of different models. 

In addition to the reviews, we have examined three 

implemented system approaches. These approaches are 

designed to support human experts in their decision making for 

quality-related tasks. Table 1 shows to what extent the 

approaches meet the research gaps, respectively the challenges. 

Table 1. Research gaps and challenges met by related approaches. 

Research 

Gap 

References Challenges Examined Approaches 

C1 C2 C3 [4] [5] [3] 

RG1 [7–10]  - - ◑ ◑ ○ 

RG2 [7,9,10] - -  ○ ● ○ 

RG3 [7,9,10] - -  ○ ○ - 

RG4 [7–11] -  - ◑ ◑ ◑ 
: Challenge related to research gap | ●/◑/○: Research gap completely/partially/not fulfilled 

The Advanced Manufacturing Analytics (AdMA) platform 

focuses on optimizing manufacturing processes through 

adjustments of process characteristics [4]. The AdMA platform 

proposes a general and holistic data warehouse that only 

integrates data from well-defined information systems (e.g., 

from an ERP). However, it does not address the complex data 

characteristics that are inherent in manufacturing (RG1). 

Furthermore, the data mining task is only a two-class 
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classification (OK vs. not OK) (RG2). The author does not 

consider any evaluation of the results at all (RG3). The user 

perspective is considered, but without taking into account 

updates of models (RG4). 

Kassner et al. define a Quality Analytics Toolkit (QATK) to 

recommend likely error codes based on the automatic 

recognition of errors mentioned in textual quality reports [5]. 

This implementation integrates unstructured text data from 

different tables stored in a single data source, i.e., it does not 

integrate several heterogeneous data sources at all (RG1). The 

classification task is a complex one with more than 500 classes 

and with a relatively large data set to build models (RG2). 

However, the authors do neither consider the uneven class 

distribution nor do they offer any economic evaluation of the 

predicted results (RG3). Like the AdMA platform, the update 

of models is not considered (RG4). 

The ProDaMi is a modular data mining application with a 

quality management component [3]. This application mentions 

the importance of data preparation and refers to a data 

warehouse, but without addressing further details regarding the 

heterogeneity and complexity of data (RG1). The author do not 

provide any information regarding the number of classes or the 

way how analytical results are validated (RG2 and RG3). 

Nevertheless, the application offers a user interface for viewing 

results, but it still does not remove the burden from users to 

select the models that shall be applied and update them (RG4). 

In summary, none of the approaches fully covers all data 

characteristics and challenges. Instead, each approach focuses 

on individual aspects that are of particular interest to the 

respective research goals. 

4. Domain-Specific Approach to Support Fault Diagnosis 

and Quality Control in End-of-Line Testing 

Now, we present an extended process for the EoL testing 

(4.1). Furthermore, we propose an architecture for a fault 

diagnosis and quality control system (4.2). 

 Extended Process for End-of-Line Testing 

To implement a domain-specific approach, we extend an 

EoL process by novel analytical components for data 

provisioning, fault diagnosis and quality control, as shown in 

Fig. 2. The components data provisioning and fault diagnosis 

mainly support the application phase shown at the bottom of 

Fig. 1. The component quality control additionally helps to 

monitor and improve the assembly line. The overall process is 

now based on five major steps: 

1. The pass/fail decision is based on sensor values from the 

test bench (cf. Section 2.1). 

2. The data provisioning extracts and integrates relevant 

data from the productive data sources, i.e., execution 

data of failed test runs and data of the affected engines. 

3. The fault diagnosis applies a data mining model on the 

provisioned data to recommend a list of top k error codes 

(possibly faulty parts) to the operator. Furthermore, this 

step documents the error code an operator finally selects 

for an affected test run. 

4. Based on the fault diagnosis, the operator repairs or 

replaces the faulty part to fix the quality issue. After s/he 

has completed this rework step, the engine is tested again. 

In case of a total economic loss, the unit is scrapped. 

Therefore, the operator has to document the real findings 

and the conducted repair with its effectiveness. 

5. The quality control is based on real findings from the 

rework step. It enables the identification and the initiation 

of countermeasures in the assembly. 

Fig. 2. Extended Process for EoL Testing Area. 

 Fault Diagnosis and Quality Control Architecture 

Fig. 3 shows our analytical architecture that supports 

operators in fault diagnosis and quality control. Besides the 

source data and analytical data (4.2.1), the architecture 

compromises the main component recommendation and 

assembly monitoring (4.2.2). 

 Source Data and Analytical Data 

Source Data: Except for the assembly data, all source data 

are described in Section 2.2. Assembly data is necessary for 

monitoring the assembly during the quality control step in 

Fig. 2. This data originates from a production process system. 

It defines the structure of an assembly line by associating 

assembly stations with their upstream and downstream stations. 

Analytical Data: These data do not originate from a source 

system. They are generated either by the analytical process or 

by the testing engineer or manager. The knowledge base results 

from data preparation and stores the prepared data set. The 

prepared data set is being preprocessed and used as an input for 

the training phase (cf. Fig. 1). The model repository manages 

different data mining models that are generated by this training 

phase. The analytical results store the recommended top k 

faulty parts and the operator's selected error code. The 

allocation base store the allocation of costs and stations for 

error codes to implement the quality monitoring. 

 Recommendation and Assembly Monitoring 

Data Provisioning: This component implements step 2 in 

Fig. 2 and addresses research gap RG1. The scientific 

community usually assumes a holistic data warehouse, e.g., as 

offered by Gröger et al. [4]. However, the data schema of a data 

warehouse is often tailored to support only predefined analyses. 
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In case different kinds of analyses are needed, the data schema 

and corresponding data integration processes have to be 

adjusted. This leads to a high effort for implementing and 

maintaining a data warehouse. In our case, it is more efficient 

to extract and prepare relevant data from the source systems 

and to store them in a knowledge base. The knowledge base is 

a large table without a rigid schema, which makes the approach 

more flexible with respect to additional data analyses. 

Mechanisms for extracting, cleaning, and storing data are 

reflected in the preparation subcomponent. The preprocessing 

subcomponent allows for transforming the data into a suitable 

format as required for the training and application phases. 

Fig. 3. Architecture of Recommendation and Monitoring System. 

{2}/{3}/{5}: Represent the steps from Fig. 2. 

Recommender: This component implements step 3 in 

Fig. 2 and addresses research gaps RG2, RG3, and RG4. The 

models are subdivided by a differentiation criterion, in our case 

the construction type (cf. Section 2.2). To address research gap 

RG4, the subcomponent retrieve model uses this criterion to 

select and apply the correct model for the relevant test run that 

has been performed. The applied model obtains the original list 

of recommendations. This original list of top k error codes 

contains most likely error codes in descending order of their 

likelihood. However, this list does not consider any economic 

aspects so far. For instance, it is economically unreasonable to 

suggest parts that have a marginal higher probability than other 

parts, but that cause much higher costs to replace or repair them 

(e.g., crankshafts). Thus, we evaluate the ranking of top k error 

codes economically according to a cost function to obtain an 

adjusted list. This addresses one aspect of research gap RG3. 

Both the original and the adjusted list are stored in the database 

for analytical results, together with the underlying test run and 

the error code finally selected by the operator. 

Research gaps RG2 and RG3 influence each other, i.e., the 

fact that the data contains numerous classes also increases the 

uneven distribution of these classes and vice versa. To address 

this, we adopt an established method for data over- and 

undersampling: the SMOTE algorithm [12]. Instead of simply 

duplicating entries, this algorithm creates new synthetic data 

instances that are interpolations of the seldom error codes. Note 

that this method is also able to boost the original small data set. 

To support regular updates of models (cf. RG4), we train the 

models after a certain amount of new diagnosis data becomes 

available. Subsequently, the knowledge base is updated and the 

newly trained models are stored in the model repository. 
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Failure Process Matrix: This component implements 

step 5 in Fig. 2. It monitors the assembly and also allow us to 

consider economic aspects in the recommendation of error 

codes (cf. RG3). Schloske et al. propose the failure process 

matrix (FPM) for quick analysis and economical optimization 

of complex assembly processes [13]. 

For our approach, we have adapted the FPM to tailor it to 

the domain of EoL testing. The columns of the matrix describe 

the chronological order of the process steps in the assembly line 

(see the right side of Table 2). The rows show the error codes 

detected in EoL testing. In case a matrix field is set with a 

value, the relevant error code is caused by the associated 

process step. The actual value of the matrix field specifies how 

often the process step has caused this error during a certain 

period of time. This period of time describes the validly of the 

assignments to error codes and is defined on the left side of the 

matrix (valid_from, valid_to). Furthermore, this left side 

associates each error code with the costs for reworking on the 

faulty part. As a result, the matrix indicates the process steps 

having quality issues and the respective costs. 

Table 2. Failure Process Matrix. 

5. Prototypical Implementation and Validation 

As discussed in Section 4.2, different components of the 

architecture deal with different research gaps being relevant to 

the domain of EoL testing. For example, the data provisioning 

component provides data for the knowledge base, on which 

models can be trained without requiring a holistic data 

warehouse as data source (cf. RG1). Furthermore, we use the 

SMOTE algorithm in the component obtain original list to 

overcome the challenges with numerous (cf. RG2) and 

unevenly distributed classes (cf. RG3). Furthermore, both the 

subcomponent economic evaluation and the failure process 

matrix consider rework costs and thus economical aspects 

while predicting a list of top k error codes (cf. RG3). The proper 

model to be applied is selected by the subcomponent retrieve 

model to unburden the operator from this task (cf. RG4). For 

the first time, this introduces an approach that addresses all 

EoL-specific challenges in a holistic way. 

We have implemented our approach for the use case and 

data from the real-world OEM mentioned in Section 2.2. We 

thereby followed the well-known cross-industry standard 

process for data mining (CRISP-DM) [14]. Especially in the 

first three steps of CRISP-DM, we closely collaborated with 

the domain experts of the OEM to understand their business 

and to prepare the data properly. For data storage, we use 

Microsoft SQL Server 20141. The preparation subcomponent 

is implemented in IBM SPSS Modeler 16.02. We have built two 

2 https://www.ibm.com/us-en/marketplace/spss-modeler 
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classification (OK vs. not OK) (RG2). The author does not 

consider any evaluation of the results at all (RG3). The user 

perspective is considered, but without taking into account 

updates of models (RG4). 

Kassner et al. define a Quality Analytics Toolkit (QATK) to 

recommend likely error codes based on the automatic 

recognition of errors mentioned in textual quality reports [5]. 

This implementation integrates unstructured text data from 

different tables stored in a single data source, i.e., it does not 

integrate several heterogeneous data sources at all (RG1). The 

classification task is a complex one with more than 500 classes 

and with a relatively large data set to build models (RG2). 

However, the authors do neither consider the uneven class 

distribution nor do they offer any economic evaluation of the 

predicted results (RG3). Like the AdMA platform, the update 

of models is not considered (RG4). 

The ProDaMi is a modular data mining application with a 

quality management component [3]. This application mentions 

the importance of data preparation and refers to a data 

warehouse, but without addressing further details regarding the 

heterogeneity and complexity of data (RG1). The author do not 

provide any information regarding the number of classes or the 

way how analytical results are validated (RG2 and RG3). 

Nevertheless, the application offers a user interface for viewing 

results, but it still does not remove the burden from users to 

select the models that shall be applied and update them (RG4). 

In summary, none of the approaches fully covers all data 

characteristics and challenges. Instead, each approach focuses 

on individual aspects that are of particular interest to the 

respective research goals. 

4. Domain-Specific Approach to Support Fault Diagnosis 

and Quality Control in End-of-Line Testing 

Now, we present an extended process for the EoL testing 

(4.1). Furthermore, we propose an architecture for a fault 

diagnosis and quality control system (4.2). 

 Extended Process for End-of-Line Testing 

To implement a domain-specific approach, we extend an 

EoL process by novel analytical components for data 

provisioning, fault diagnosis and quality control, as shown in 

Fig. 2. The components data provisioning and fault diagnosis 

mainly support the application phase shown at the bottom of 

Fig. 1. The component quality control additionally helps to 

monitor and improve the assembly line. The overall process is 

now based on five major steps: 

1. The pass/fail decision is based on sensor values from the 

test bench (cf. Section 2.1). 

2. The data provisioning extracts and integrates relevant 

data from the productive data sources, i.e., execution 

data of failed test runs and data of the affected engines. 

3. The fault diagnosis applies a data mining model on the 

provisioned data to recommend a list of top k error codes 

(possibly faulty parts) to the operator. Furthermore, this 

step documents the error code an operator finally selects 

for an affected test run. 

4. Based on the fault diagnosis, the operator repairs or 

replaces the faulty part to fix the quality issue. After s/he 

has completed this rework step, the engine is tested again. 

In case of a total economic loss, the unit is scrapped. 

Therefore, the operator has to document the real findings 

and the conducted repair with its effectiveness. 

5. The quality control is based on real findings from the 

rework step. It enables the identification and the initiation 

of countermeasures in the assembly. 

Fig. 2. Extended Process for EoL Testing Area. 

 Fault Diagnosis and Quality Control Architecture 

Fig. 3 shows our analytical architecture that supports 

operators in fault diagnosis and quality control. Besides the 

source data and analytical data (4.2.1), the architecture 

compromises the main component recommendation and 

assembly monitoring (4.2.2). 

 Source Data and Analytical Data 

Source Data: Except for the assembly data, all source data 

are described in Section 2.2. Assembly data is necessary for 

monitoring the assembly during the quality control step in 

Fig. 2. This data originates from a production process system. 

It defines the structure of an assembly line by associating 

assembly stations with their upstream and downstream stations. 

Analytical Data: These data do not originate from a source 

system. They are generated either by the analytical process or 

by the testing engineer or manager. The knowledge base results 

from data preparation and stores the prepared data set. The 

prepared data set is being preprocessed and used as an input for 

the training phase (cf. Fig. 1). The model repository manages 

different data mining models that are generated by this training 

phase. The analytical results store the recommended top k 

faulty parts and the operator's selected error code. The 

allocation base store the allocation of costs and stations for 

error codes to implement the quality monitoring. 

 Recommendation and Assembly Monitoring 

Data Provisioning: This component implements step 2 in 

Fig. 2 and addresses research gap RG1. The scientific 

community usually assumes a holistic data warehouse, e.g., as 

offered by Gröger et al. [4]. However, the data schema of a data 

warehouse is often tailored to support only predefined analyses. 
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In case different kinds of analyses are needed, the data schema 

and corresponding data integration processes have to be 

adjusted. This leads to a high effort for implementing and 

maintaining a data warehouse. In our case, it is more efficient 

to extract and prepare relevant data from the source systems 

and to store them in a knowledge base. The knowledge base is 

a large table without a rigid schema, which makes the approach 

more flexible with respect to additional data analyses. 

Mechanisms for extracting, cleaning, and storing data are 

reflected in the preparation subcomponent. The preprocessing 

subcomponent allows for transforming the data into a suitable 

format as required for the training and application phases. 

Fig. 3. Architecture of Recommendation and Monitoring System. 

{2}/{3}/{5}: Represent the steps from Fig. 2. 

Recommender: This component implements step 3 in 

Fig. 2 and addresses research gaps RG2, RG3, and RG4. The 

models are subdivided by a differentiation criterion, in our case 

the construction type (cf. Section 2.2). To address research gap 

RG4, the subcomponent retrieve model uses this criterion to 

select and apply the correct model for the relevant test run that 

has been performed. The applied model obtains the original list 

of recommendations. This original list of top k error codes 

contains most likely error codes in descending order of their 

likelihood. However, this list does not consider any economic 

aspects so far. For instance, it is economically unreasonable to 

suggest parts that have a marginal higher probability than other 

parts, but that cause much higher costs to replace or repair them 

(e.g., crankshafts). Thus, we evaluate the ranking of top k error 

codes economically according to a cost function to obtain an 

adjusted list. This addresses one aspect of research gap RG3. 

Both the original and the adjusted list are stored in the database 

for analytical results, together with the underlying test run and 

the error code finally selected by the operator. 

Research gaps RG2 and RG3 influence each other, i.e., the 

fact that the data contains numerous classes also increases the 

uneven distribution of these classes and vice versa. To address 

this, we adopt an established method for data over- and 

undersampling: the SMOTE algorithm [12]. Instead of simply 

duplicating entries, this algorithm creates new synthetic data 

instances that are interpolations of the seldom error codes. Note 

that this method is also able to boost the original small data set. 

To support regular updates of models (cf. RG4), we train the 

models after a certain amount of new diagnosis data becomes 

available. Subsequently, the knowledge base is updated and the 

newly trained models are stored in the model repository. 
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Failure Process Matrix: This component implements 

step 5 in Fig. 2. It monitors the assembly and also allow us to 

consider economic aspects in the recommendation of error 

codes (cf. RG3). Schloske et al. propose the failure process 

matrix (FPM) for quick analysis and economical optimization 

of complex assembly processes [13]. 

For our approach, we have adapted the FPM to tailor it to 

the domain of EoL testing. The columns of the matrix describe 

the chronological order of the process steps in the assembly line 

(see the right side of Table 2). The rows show the error codes 

detected in EoL testing. In case a matrix field is set with a 

value, the relevant error code is caused by the associated 

process step. The actual value of the matrix field specifies how 

often the process step has caused this error during a certain 

period of time. This period of time describes the validly of the 

assignments to error codes and is defined on the left side of the 

matrix (valid_from, valid_to). Furthermore, this left side 

associates each error code with the costs for reworking on the 

faulty part. As a result, the matrix indicates the process steps 

having quality issues and the respective costs. 

Table 2. Failure Process Matrix. 

5. Prototypical Implementation and Validation 

As discussed in Section 4.2, different components of the 

architecture deal with different research gaps being relevant to 

the domain of EoL testing. For example, the data provisioning 

component provides data for the knowledge base, on which 

models can be trained without requiring a holistic data 

warehouse as data source (cf. RG1). Furthermore, we use the 

SMOTE algorithm in the component obtain original list to 

overcome the challenges with numerous (cf. RG2) and 

unevenly distributed classes (cf. RG3). Furthermore, both the 

subcomponent economic evaluation and the failure process 

matrix consider rework costs and thus economical aspects 

while predicting a list of top k error codes (cf. RG3). The proper 

model to be applied is selected by the subcomponent retrieve 

model to unburden the operator from this task (cf. RG4). For 

the first time, this introduces an approach that addresses all 

EoL-specific challenges in a holistic way. 

We have implemented our approach for the use case and 

data from the real-world OEM mentioned in Section 2.2. We 

thereby followed the well-known cross-industry standard 

process for data mining (CRISP-DM) [14]. Especially in the 

first three steps of CRISP-DM, we closely collaborated with 

the domain experts of the OEM to understand their business 

and to prepare the data properly. For data storage, we use 

Microsoft SQL Server 20141. The preparation subcomponent 

is implemented in IBM SPSS Modeler 16.02. We have built two 

2 https://www.ibm.com/us-en/marketplace/spss-modeler 

Recommendation and Assembly Monitoring

Source Data Analytical Data

Assembly

Diagnosis

Test Bench

Engine Knowledge Base Model Repository

Allocation Base Analytical Results

Data Provisioning Realize FPMRecommender

Preparation

Preprocessing 

Assign Costs to 

Error Codes 

Assign Stations to 

Error Codes 

Economic

Evaluation

Obtain

Adjusted List

Retrieve

Model

Obtain

Original List 3 52

FPM: Failure Process Matrix



1338 Vitali Hirsch et al. / Procedia CIRP 72 (2018) 1333–1338
6 Author name / Procedia CIRP 00 (2018) 000–000 

preparation steps, one for the training phase and one for the 

application phase. Furthermore, we use R3 to implement the 

preprocessing subcomponent. 

The recommender focuses on data mining and is thus 

implemented in R. We have used different data mining 

algorithms from the “caret” package 4  to build models 

recommending error codes. To overcome our challenges, we 

have decomposed this problem into sub-problems, i.e., each 

error code corresponds to a model (class model) that indicates 

the likelihood of this particular error code. For each class 

model, we have trained, tested, and evaluated several 

algorithms. We have then selected the algorithm with the 

highest performance measure, in our case the F1 score, for each 

class model. The F1 score estimates how exact and complete a 

model can predict the error code of interest. All available class 

models for one construction type result in an ensemble that is 

used for predicting the top k error codes. 

To evaluate the resulting ensemble, we use the F1 score as a 

primary and accuracy as secondary performance measure. 

Accuracy is defined as the percentage of test cases, where the 

ensemble predicts the correct error code. We have measured F1 

score and accuracy (Acc.) for recommendation lists containing 

the top k = 1, 5, and 10 error codes (PM@k). We compare the 

results with a baseline, i.e., the heuristic frequency metrics. 

This means the baseline always uses the error code that occurs 

most often in the whole preprocessed data set. 

Table 3 shows that the ensemble delivers better accuracy 

results than the baseline only for a higher value of k. 

Nevertheless, the F1 score is significantly better than the 

baseline for all values of k. Thus, the ensemble is more exact 

and complete in the prediction of error codes as the baseline. 

This shows the potential of our analytical approach and the 

underlying data mining algorithms to recommend correct error 

codes. This in turn helps operators during fault diagnosis to 

better identify the faulty part that has to be replaced or repaired. 

Table 3. Results of experiment for one single construction type. 

Ensemble /  

Base line 

PM@1 PM@5 PM@10 

F1 Acc. F1 Acc. F1 Acc. 

Ensemble ~3% ~8% ~62% ~64% ~77% ~79% 

Code Frequency ~1% ~13% ~15% ~41% ~38% ~58% 

We also performed a qualitative validation with domain 

experts and managers to show the advantages of our analytical 

approach. The proposed error codes have especially helped the 

testing engineers in cases, where there was no evidence for a 

cause of an error at all. Furthermore, managers can now use the 

FPM matrix to quantify the costs and point out possibilities to 

optimize the assembly.  

6. Conclusion and Future Work 

In this paper, we introduced an analytical approach that 

helps operators in fault diagnosis and quality control in the EoL 

testing area by using data mining. The approach especially 

 

 
3 https://www.r-project.org/ 

considers the data characteristics being prevalent in industrial 

settings. So, it can be reused as a blueprint for such scenarios. 

We have also shown how to implement this approach in a 

real-world use case of a big OEM. The statistical evaluation 

shows that the prediction performance gets much better when 

using data mining algorithms compared to the baseline 

approach. This way, our appraoch offers a robust solution to 

fault diagnosis and quality control, as well as to reduce the 

amount of unnecessary rework. 

So far, the analytical approach does not consider operators’ 

feedback in order to process them for further recommendation 

improvements. These and other topics, such as the 

enhancement of the FPM with additional features like audit 

costs, will be the subject of future work.  
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