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The Shapere–Wilczek model [1], or so called f gh model, enjoys the remarkable features of a Time Crystal 
(TC) that has a non-trivial time dependence in its lowest energy state (or the classical ground state). 
We construct a particular form of f gh model (with specified f , g, h functions) that is derived from a 
Mini-superspace version of a quadratic f (R, Rμν) gravity theory. Main part of the investigation deals with 
thermodynamic properties of such systems from classical statistical mechanics perspective. Our analysis 
reveals the possibility of a phase transition. Because of the higher (time) derivative nature of the model 
computation of the partial function is non-trivial and requires newly discovered techniques. We speculate 
about possible connection between our model and the Multiverse scenario.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The classical and quantum versions of the Time Crystal (TC) 
have generated an enormous amount of interest just within a 
few years of its theoretical possibility, conceived by Shapere and 
Wilczek [1] and by Wilczek [2] respectively. A similar idea (lead-
ing to a spatially varying ground state condensate) in a different 
framework was also proposed by one of the present authors in 
[3]. (For a recent review and references, see [4].) After the criti-
cal assessment of [5] of the original quantum version given in [2], 
there has been major theoretical developments [6] of the quan-
tum TC with remarkable experimental verifications [7]. On the 
other hand the classical version of TC is free from controversies 
[8]. However, the Classical TC (CTC) is comparatively less studied 
mainly due to lack of realistic models (however see [9] for an 
explicit classical model). In the cosmological context, a relativis-
tic scalar field with a non-canonical kinetic term, in an expanding 
Friedmann–Robertson–Walker (FRW) universe, induces a TC behav-
ior [10]. More recently, we have shown [11] that TC behavior in a 
noncommutative extended FRW model [12] where the scale factor, 
(being the only dynamical variable), exhibits periodic behavior in-
dicating the possibility of a bouncing universe [13]. It is interesting 
specially because the bouncing behavior is achieved in a purely ge-
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ometric setup, without any matter field. TC in (cubic) f (R) form of 
gravity has been proposed in [14]. The present work deals with a 
specific form of quadratic f (R, Rμν Rμν) gravity but our main fo-
cus is on its thermodynamic aspects from a statistical mechanical 
perspective.

In the theme of cosmology in TC scenario a recent important 
work is by Vacaru [15]. The author has considered in detail TC 
behavior in generic off-diagonal, locally anisotropic and inhomo-
geneous metrics in a modified gravity framework, by exploiting 
earlier works in this context [16]. The motivation of studying ex-
tended gravity models stems from the fact that observational re-
sults of Planck 2015 [17] suggest that conventional and minimal 
models of inflationary cosmology are not sufficient for a unified 
description of inflation with dark energy era. In particular the au-
thor in [15] has analyzed TC in Starobinsky quadratic gravity model 
f (R, R2) [18] that agrees with the Planck 2015 data [17]. It should 
be noted that, even though the premises of the work in [15] and 
the present work is somewhat similar, the focus of the two studies 
are entirely different. In [15] the author has considered purely cos-
mological effects in a generalized spacetime dependent metric and 
only at the end restricts to Starobinsky model [18]. On the other 
hand we have taken up (a slightly extended version f (R, Rμν Rμν)

of) Starobinsky model in FRW framework and have concentrated 
on its thermodynamic features from a statistical mechanical per-
spective.

It is now established that (classical and quantum) TC is a novel 
and distinct phase. This immediately raises questions about its 
thermodynamic behavior. It is probably debatable whether con-
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ventional equilibrium statistical mechanics can be applied to TC 
that are curiously in the borderline between equilibrium and non-
equilibrium system. Since we have an unambiguous mechanical 
(albeit non-canonical) particle model for CTC, we forge ahead to 
construct its partition function and come up with the remarkable 
result of a possible phase transition in the system. Computation 
of the partition function exploits newly established techniques: 
higher derivative nature of the parent model leaves its signature in 
a slightly modified version of the model (to avoid ghosts), follow-
ing the scheme proposed in [19] and integration for computing the 
partition function requires a non-trivially modified measure [20]
(due to the presence of quartic velocity term).

2. Classical (generic) time crystal

The spontaneous symmetry breaking paradigm is pivotal in 
the general phenomenon of crystallization. In its conventional 
manifestation ground state (or minimum energy state) consists 
of the atoms arranging themselves into a definite periodic lat-
tice throughout the configuration space, thereby breaking spon-
taneously the spatial translation symmetry. In [3] higher spatial 
derivative terms induced a spontaneous symmetry breaking in mo-
mentum space leading to the lifting of translational invariance. In 
[1,2] examples of models were provided whose ground state is 
endowed with a periodic motion leading to a Time Crystal that 
violates time translation symmetry. Note that Hamiltonian dynam-
ics forbids the existence of CTC. For a Hamiltonian H(p, φ) with 
coordinate φ and conjugate momentum p, H(p, φ) minimizes at 
∂ H
∂ p = ∂ H

∂φ
= 0. But Hamilton’s equations of motion states φ̇ = ∂ H

∂ p . 
Put together we get for the minimum energy state φ̇ = ∂ H

∂ p = 0 in-
dicating that φ should be a constant. Thus classical ground state 
should be static contrary to a CTC ground state. This negative con-
clusion can be bypassed if the structure of H is such that the 
canonical momentum p leads to a multivalued Hamiltonian as a 
function of φ̇ with cusps at ∂ p

∂φ̇
= 0 where the Hamiltonian equa-

tions of motion are not valid. In the CTC models of [1,2,11] the 
system ground state has to adjust itself to the contrasting demands 
of a time invariant (constant position) and simultaneously time 
varying (constant velocity) state.

3. Classical (cosmological) time crystal

In the present paper we study a generalized form of gravity, 
popularly known as f (Rμν) gravity with up to quadratic invariants 
made out of the Ricci tensor and scalar,

A = c4

16πG

∫ √−g(R + C R2 + D Rμν Rμν − 2�) d4x (1)

where C, D are numerical constants. In the cosmological context, 
adhering to the minisuperspace formalism, the action (1) reduces 
to,

A = 3c4

2G

∫
dt

[(
−aȧ2 + ka − �

3
a3

)
+ p

(
ȧ4

a
+ k2

a

)
+ q(ȧ2ä)

+ p(aä2) + 2pk
ȧ2

a

]
(2)

where p = 6C + 2D and q = 12C + 2D . The q-term drops out being 
a total derivative. This Lagrangian is a variant of the f gh form of 
[1], L = f (a)ȧ4 + g(a)ȧ2 + h(a), having in addition ä terms.

This action has a complication since it consists of higher (time) 
derivative terms and will be plagued by ghost problems. Recall that 
in [11] we had dropped higher derivative terms, (present in the 
Fig. 1. The plot for the scale factor a(t), vs. t showing the bounce and singularity 
during the evolution of universe for the master equation (4).

noncommutative extended FRW model [12]), in an approximation 
scheme. Incidentally, f (R) models constructed out of Ricci scalar 
R only are free from the ghost menace. For the mechanical mod-
els, (as the present one), the ghost problem manifests itself via a 
non-positive definite Hamiltonian. We follow the scheme of [19] to 
develop a reduced model with a positive definite Hamiltonian (see 
Appendix A for details). This method allows us to get rid of the 
higher time derivative term thereby yielding

L =
(

−aȧ2 + ka − �

3
a3

)
+ p

(
ȧ4

a
+ k2

a

)
− σ

ȧ4

4a
+ 2pk

ȧ2

a
. (3)

From the Lagrangian (3), the equation of motion can be written as,

ä

[
−2a + 12p

ȧ2

a
+ 4p

k

a
− 3σ

ȧ2

a

]
− 3ȧ4

a2

(
p − σ

4

)
− 2pk

ȧ2

a2

+ p
k2

a2
− k + �a2 = 0. (4)

We provide a plot in Fig. 1 depicting evolution of the scale factor 
a(t) with the cosmic time t by solving the master equation eqn. 
(4) numerically, assuming spatial flatness of the universe (i.e., for 
k = 0). The figure shows that at a certain time t , the scale factor 
shows a single hump before it hits the singularity at around t ∼ 2. 
This phenomenon can be interpreted as a cosmological bounce.

Defining the canonical momentum as

p = ∂L

∂ȧ
= −2aȧ + 4p

(
ȧ3

a
+ k

ȧ

a

)
− σ

ȧ3

a
, (5)

the Hamiltonian reads,

H = pȧ − L = 3
(

p − σ

4

) ȧ4

a
+ 2pk

ȧ2

a
− aȧ2 − p

k2

a
− ka + �

3
a3

= 3(p − σ
4 )

a

[
ȧ2 − (a2 − 2pk)

6(p − σ
4 )

]2

+ V ef f (6)

where the effective potential V ef f = �
3 a3 − p k2

a − ka − (a2−2pk)2

12a(p− σ
4 )

. 
Similar ideas using spatial derivative have been employed in [3,21].

4. Minimizing H to show time crystal behavior

In our model a being the scale factor is always positive. Hence 
renaming (p − σ/4) ∼ p > 0, notice that H can be minimized by 
separately minimizing the kinetic term, ȧ2

0 = (a2
0−2pk)

6p with a0 de-
termined from minimizing V ef f , i.e., ∂V ef f /∂a = 0. Thus, as long as 
a2 − 2pk > 0, the system can behave as a CTC since the minimum 
0
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energy state or ground state requires a non-zero velocity (ȧ0 �= 0) 
as well as a non-zero coordinate (a0 �= 0).

5. Thermodynamics of classical time crystal

Thermodynamic properties of a generic CTC from a statistical 
mechanics perspective is the new element in our work where we 
utilize the CTC Hamiltonian. Thermodynamic features of this new 
phase of matter – CTC – have not been studied earlier and there 
are novelties both in computational procedure and in results. Very 
interestingly, we find indications of phase transition as ȧ increases 

from a small value to ȧ0 = ±
√

(a2
0−2pk)

6p when the CTC phase sets 
in.

Although we have managed to replace higher time derivatives 
still the Lagrangian contains quartic term in ȧ that is in fact nec-
essary for the TC behavior. However this makes the conjugate 
momentum p multiple valued resulting in different Hamiltonians. 
Conventionally one computes the partition function summing or 
integrating over phase space degrees of freedom, i.e., coordinate 
and momentum but for a generic CTC model this is not conve-
nient. However coordinate (a) and velocity (ȧ) prove to be the 
proper choice of variables, as advocated in [22]. The price to pay 
for this is the following: using a, ȧ instead of a, p is effectively 
a change of variables that brings in a Jacobian J (a, ̇a) in the mea-
sure (see Appendix B for details of computing J in our model). This 
has been discussed with specific examples similar to our model in 
[20]. Hence, the partition function is (with the inverse temperature 
β = 1/kB T ≡ 1/T where the Boltzmann constant kB = 1),

Z =
ȧ=∞∫

ȧ=−∞
dȧ

a=A∫
a=0

da J (a, ȧ)e−βH(a,ȧ). (7)

Although the ȧ-integral is analytically doable it is not possible to 
perform the a-integral analytically. Hence we take recourse to nu-
merical integration. Our aim is to consider a canonical ensemble 
and compute thermodynamic potential such as the Helmholtz free 
energy F and subsequently other thermodynamic observables such 
as average energy, entropy, and higher derivatives such as specific 
heat and compressibility. Our scheme is the following: we numeri-
cally calculate (22) for a set of different values of A, T (remember 
that “volume” is linear dimension a in our case) and thus generate 
a set of values for F . Note that factor J in measure can become 
negative thus rendering Z unphysical. This forces us to restrict the 
upper limit of a.1

In order to study rest of the thermodynamic quantities, analytic 
forms of F (T ) for fixed a and F (a) for fixed T are obtained by 
curve fitting. Comparison with ideal one dimensional gas profile

F Ideal = −T

(
Constant + ln(A) + 1

2
ln(T )

)
,

it is remarkably clear that the CTC has two distinct type of be-
haviors: in one sector it resembles the ideal gas whereas in the 
other sector it behaves differently. In all the figures containing red 
and blue profiles, red line shows ideal gas behavior and blue line 
depicts the CTC behavior. This is revealed in Fig. 2 in a sort of 
phase diagram where the set of blue points for P , A, T (which 
are computed later in the paper) represent CTC and the set of red 

1 Note that restrictions on the dimension of the system appears for a real gas as 
well. In van der Waal equation of state the volume can not be smaller that the total 
volume of gas particles.
Fig. 2. Phase diagram of CTC (blue surface) with bounded A and ideal gas (red sur-
face) with unbounded A. The two surfaces are similar for A > 3.8 where the CTC 
(blue) surface exhibits a discrete jump.

points P , A, T represent ideal gas, following the ideal gas equation 
of state Pa = T . Note the sharp step in the blue CTC surface for 
a fixed A after which the blue (CTC) and red (ideal gas) surfaces 
follow similar behavior. As explained before the blue CTC surface 
does not continue beyond a specific value of a (a ∼ 3.8 for our 
model).

Our method is illustrated in Fig. 3 where in the left panel of 
Fig. 3 we show the evolution of lnZ as function of T for fixed a
and in the right panel of Fig. 3 we show the evolution of lnZ as 
a function of a for fixed T . The qualitative difference in lnZ above 
and below the transitional region requires two different analytic 
forms for lnZ that we fix by curve fitting in Mathematica. Notice 
that the CTC curve becomes similar to the ideal gas curve in Fig. 3
after a critical value of T (or a) whereas the CTC curve profile is 
qualitatively different below the critical region. To faithfully repre-
sent the numerical results it seems natural to fit the CTC profiles 
similar to ideal gas for regions above the critical value and as ar-
bitrary power law for region below the critical value. In a set of 
plots given in Fig. 4, we consider a prototype profile with a fixed 
and plot Free Energy F (T ) = −T ln Z (upper left panel of Fig. 4), 
the entropy S(T ) = −(∂ F )/(∂T ) (upper right panel of Fig. 4), en-
ergy E(T ) shown in the lower left panel of Fig. 4, and finally the 
specific heat Ca(T ) = (∂ E)/(∂T ) = T (∂ F )/(∂T ) − F (analogous to 
CV ) in the lower right panel of Fig. 4.

It is interesting to note that with our fit for ln Z as function 
of T , F = −T ln Z is continuous across the critical value of T with 
existence of metastable states along extension along both sides of 
the critical value of T in the upper left panel of Fig. 4. These are 
shown as dotted red and blue points extending the ideal gas and 
CTC respectively. However, discontinuities do show up in the first and 
second derivatives of F at a critical T . The jump in E(T ) (upper right 
panel of Fig. 4) and in S(T ) (lower left panel of Fig. 4) indicate 
possibility of a structural change with a latent heat given by L =
T 	S . This is further corroborated in the finite gap in Ca profile 
against T displayed in the lower right panel of Fig. 4.

In the next set of graphs, summarized in Fig. 5, we plot 
the Free Energy as a function of a for fixed T , pressure P =
(∂ F )/(∂a) and compressibility (or the inverse of bulk modulus) 
κ = {(a∂2 F )/(∂a2)}−1 respectively. Once again we find that F (a)

is continuous across the critical a-value, see the upper left panel 
of Fig. 5. There is a discontinuity in the pressure P against a graph 
indicating the possibility of a liquid–gas like transition where be-
low critical a pressure rises much sharply with lowering volume 
in comparison to the zone above critical a (see the upper right 
panel of Fig. 5). Consistent with this feature a jump is observed in 
the profile of compressibility κ versus a (see the lower panel of 
Fig. 5).

Lastly in Fig. 6 we show the behavior of another useful pa-
rameter, the compressibility factor zc = (Pa)/T against pressure P
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Fig. 3. The left panel shows the qualitative evolution of ln Z with respect to T for the fixed scale factor a while in the right panel the evolution of ln Z vs. a for the fixed T
has been displayed.

Fig. 4. The figure presents evolutions of different thermodynamical quantities for the present scheme. Upper left: Plot of F vs. T with metastable states shown by dotted 
lines. Upper right: Energy E vs. temperature T plot showing discontinuity in first derivative of F . Lower left: Entropy S vs. temperature T plot showing discontinuity in first 
derivative of F . Lower right: Plot of specific heat Ca vs. T showing a break from continuity. In the plots the red and blue curves respectively represent the ideal gas and CTC 
profiles.
where zc,ideal = 1 for ideal gas and any deviation of zc from unity 
indicates the non-ideal behavior. Note that zc,C T C peaks to a value 
close to 1 for a specific pressure and falls for larger P . In con-
ventional non-ideal gases z starts from 1 for very low pressure 
(similar to ideal gas) but falls below 1 as pressure increases and 
for still higher pressure it goes above the ideal gas value 1. In CTC 
P is bounded due to the restriction in a.

6. Thermodynamics of multiverse?

Let us return to cosmology and try to interpret our model of a 
collection of mini-superspaces as a classical multiverse. Generally 
multiverse is considered in a quantum framework (see [23] for a 
recent perspective, also see [24]) and its thermodynamic aspects 
are studied from entanglement entropic point of view [25] (see 
also [26]). In the multiverse picture each of our “gas” particles rep-
resents a post inflation bubble universe. As suggested by Tegmark 
[27], the multiverse contains completely disconnected universes, 
governed by different physical laws or mathematical structures. 
According to Linde [28] our world (or multiverse) might be a col-
lection of infinitely many exponentially large parts and in each 
of them different low-energy laws of physics might prevail. Being 
very large, each such part evolves effectively independent of other 
parts. In our model we have considered a simplification where the 
laws of physics are identical in all member universes. The infla-
tionary scenario is believed to provide such a multiverse structure 
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Fig. 5. Upper left panel: Free Energy F vs. length dimension a for fixed T . Upper right panel: Pressure P vs. length dimension a for fixed T showing the jump. Lower panel:
Compressibility κ vs. length dimension a for fixed T showing jump. In all the plots the red and blue curves respectively represent the ideal gas and CTC profiles.
Fig. 6. Plot of the compressibility factor zc vs. pressure P for the CTC profile (blue 
curve) showing a deviation from the ideal gas nature (represented by the red curve).

where it is argued that our observable domain is just a tiny part 
of a single bubble universe that underwent an extra-fast acceler-
ating phase at some early time due to the effect of a scalar field. 
According to Vilenkin [29] and Linde [30], the concept of “eternal” 
inflation may also lead to the multiverse structure where the uni-
verse is continually self-reproducing, so that an infinite number of 
bubbles are extending in both space and time. Proposals for ob-
servational signatures for multiverse related ideas are in progress 
[31].

String landscape [32] is one of the more popular and concrete 
version of Multiverse. It has been strongly argued by Mersini-
Houghton [33] that the paradoxical choice of a low entropy (∼
high energy Big Bang inflation) initial condition needs to be ad-
dressed as a non-equilibrium dynamic problem. In this framework 
[33,34], the ensemble of universes constitutes the system that is 
immersed in a “bath” comprising very long massive perturbations 
having super-horizon sized wavelengths (the latter being larger 
than the horizon size). Effect of back reaction originating from this 
bath helps to restrict the choice of initial condition to the appar-
ently unfavorable (low entropy) one. In this context the present 
model might be considered as a crude (and brute force scaled 
down) version of the above with an identical set of universes 
where the “temperature” might be connected with the collective 
effect of the environment or bath made up of the super-horizon 
perturbations.

In the light of above ideas the present work can be tenta-
tively thought to be a study of classical statistical mechanics of 
multiverse consisting of a collection of identically behaving mini-
superspaces. The roles of different thermodynamic observables 
along with their discontinuous behavior, leading to the possibil-
ity of a phase transition, need to be explored.
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Appendix A

After introducing the Lagrangian multiplier λ, the Lagrangian 
(2) can be written as [19],
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L =
(

−aȧ2 + ka − �

3
a3

)
+ p

(
ȧ4

a
+ k2

a

)
+ 2pk

ȧ2

a
+ qȧ2ä

+paä2 + rȧ2λ + saλ2 ± √
4psλaä, (8)

where r and s are constants. Following [19] we vary λ in (8) and 
eliminate it to rewrite the Lagrangian as,

L = ȧ4

a
(p − r2

4s
) + ȧ2ä(q ∓ r

√
p/s) − aȧ2 + ka + p

k2

a

+2pk
ȧ2

a
− �

3
a3. (9)

Not that total (time-)derivative terms are dropped and furthermore 
ȧ2ä-term also will be dropped being a total derivative term. The 
conjugate momentum corresponding to the Lagrangian are,

p1 = ∂L

∂ȧ
− d

dt
(
∂L

∂ä
) = 4

ȧ3

a
(p − r2

4s
) + 4pk

ȧ

a
− 2aȧ, (10)

p2 = ∂L

∂ä
= (q ∓ r

√
p/s). (11)

Thus the Hamiltonian corresponds to,

H = p1ȧ + p2ä − L

= 3
ȧ4

a
(p − r2

4s
) + 2pk

ȧ2

a
− aȧ2 − ka − p

k2

a
+ �

3
a3

= 3(p − σ
4 )

a

[
ȧ2 − (a2 − 2pk)

6(p − σ
4 )

]2

+ V ef f (12)

where the effective potential, V ef f = �
3 a3 − p k2

a − ka − (a2−2pk)2

12a(p− σ
4 )

and σ = r2

s .

Appendix B

After removing the ghost problems, the compact form of La-
grangian (3) reads

L =
(

−aȧ2 + ka − �

3
a3

)
+ p

(
ȧ4

a
+ k2

a

)
− σ

ȧ4

4a
+ 2pk

ȧ2

a

= f (a)ȧ4 + g(a)ȧ2 + h(a) (13)

where f = (p − σ
4 ) 1

a , g = 2pk
a − a and h = p k2

a + ka − �
3 a3.

Following [20] we write the Lagrangian in terms of a new vari-
able ρ (where we have just use the constraint ρ = ȧ),

L = f ρ4 + gρ2 + h + γ (ρ − ȧ) (14)

In Hamiltonian framework [35] the constraints are,

χ1 = πρ, χ2 = πγ , χ3 = πa + γ , χ4 = 4 f ρ3 + 2gρ + γ (15)

The constraint matrix {χi, χ j} (where i and j goes from 1 to 4) 
can be written as,⎛
⎜⎜⎝

0 0 0 −A
0 0 −1 −1
0 1 0 −B
A 1 B 0

⎞
⎟⎟⎠ (16)

where, A = 12 f ρ2 + 2g and B = 4 f ′ρ3 + 2g′ρ .
And the invertible constraint matrix {χi, χ j}−1 reads (i and j

goes from 1 to 4),
⎛
⎜⎜⎝

0 B/A −1/A 1/A
−B/A 0 1 0

1/A −1 0 0
−1/A 0 0 0

⎞
⎟⎟⎠ (17)

Thus the Hamiltonian yields,

H = 3 f ρ4 + gρ2 − h

= 3 f (ρ2 + g

6 f
)2 + V ef f (18)

where, V ef f = (−h − g2

12 f ).
Now in a generic Second Class Constraint system with n Second 

Class Constraints χi , i = 1, 2, ..n, the modified symplectic structure 
(or Dirac brackets) is defined in the following way,

{C, D}∗ = {C, D} − {C,χi}{χ i,χ j}−1{χ j, D}, (19)

where {χ i, χ j} is the constraint matrix.
Hence the bracket structure among the variables ρ and a stands

{ρ,a} = − 1

A
(20)

where we have used the definition of Dirac Brackets [35]. Thus the 
required symplectic form d� is given by the inverse of the bracket 
structure,

d� = Adρda (21)

and the partition function reads as,

Z =
∫

e−βHd�

= eh0

∫
(12 f0ρ

2 + 2g0)e−(3β f0ρ
4+βg0ρ

2)dρda (22)

where β = 1/T and T is the temperature.
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