
Accepted Manuscript

A Fuzzy Logic Expert System to Predict Module Fault Proneness using Unla-
beled Data

Golnoush Abaei, Ali Selamat, Jehad Al Dallal

PII: S1319-1578(18)30024-7
DOI: https://doi.org/10.1016/j.jksuci.2018.08.003
Reference: JKSUCI 485

To appear in: Journal of King Saud University - Computer and In-
formation Sciences

Received Date: 10 January 2018
Revised Date: 29 July 2018
Accepted Date: 2 August 2018

Please cite this article as: Abaei, G., Selamat, A., Al Dallal, J., A Fuzzy Logic Expert System to Predict Module
Fault Proneness using Unlabeled Data, Journal of King Saud University - Computer and Information Sciences
(2018), doi: https://doi.org/10.1016/j.jksuci.2018.08.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

A Fuzzy Logic Expert System to Predict Module Fault Proneness using

Unlabeled Data

Golnoush Abaeia, Ali Selamata, b,c,d, *, Jehad Al Dallale

aSoftware Engineering Research Group (SERG), Department of Software Engineering, Faculty of Computing, Universiti Teknologi Malaysia,
81310, UTM Johor Bahru, Johor, Malaysia

a School of Computing, Faculty of Engineerin, UTM & UTM and Media and Games Center of Excellence (MagicX), Universiti
Teknologi Malaysia, Johor Bahru, Malaysia

b Malaysia Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Johor Bahru,
Malaysia

c Faculty of Computer Science, National University of Modern Languages, Islamabad, Pakistan
dCenter for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove

Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic
eDepartment of Information Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

ABSTRACT

Several techniques have been proposed to predict the fault proneness of software modules in the absence of fault

data. However, the application of these techniques requires an expert assistant and is based on fixed thresholds and

rules, which potentially prevents obtaining optimal prediction results. In this study, the development of a fuzzy

logic expert system for predicting the fault proneness of software modules is demonstrated in the absence of fault

data. The problem of strong dependability with the prediction model for expert assistance as well as deciding on

the module fault proneness based on fixed thresholds and fixed rules have been solved in this study. In fact,

involvement of experts is more relaxed or provides more support now. Two methods have been proposed and

implemented using the fuzzy logic system. In the first method, the Takagi and Sugeno-based fuzzy logic system is

developed manually. In the second method, the rule-base and data-base of the fuzzy logic system are adjusted using

a genetic algorithm. The second method can determine the optimal values of the thresholds while recommending

the most appropriate rules to guide the testing of activities by prioritizing the module’s defects to improve the

quality of software testing with a limited budget and limited time. Two datasets from NASA and the Turkish white-

goods manufacturer that develops embedded controller software are used for evaluation. The results based on the

second method show improvement in the false negative rate, f-measure, and overall error rate. To obtain optimal

prediction results, developers and practitioners are recommended to apply the proposed fuzzy logic expert system

for predicting the fault proneness of software modules in the absence of fault data.

Keywords: Fuzzy logic system, Genetic algorithm, Data-base, Rule-base, Threshold.

*Corresponding author

Ali Selamat*, aSoftware Engineering Research Group (SERG), Department of Software Engineering, Faculty of Computing, Universiti
Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia (aselamat@utm.my)

Submitted to Elsevier Science2
1. Introduction

Prediction of software reliability is become vital and crucial in software process due to the fast growing of

software programs in terms of size and complexity [1]. The main causes for faults in a software system include

wrong specifications and inappropriate configuration development [2] as well as incorrect design or

implementation. Software fault prediction methods improve the testing process by focusing and allocating more

resources to fault-prone modules [3].

Based on a deep analysis investigation, Radjenovicet al. [4] and Catal and Diri [5]reported that different sets of

software measurement metrics are considered to be appropriate data for building fault-prediction models. Software

quality metrics and faulty data (referred to here as data labels) of systems that are similar to the current system or

previous versions (historical data) of the considered software system can be used to build fault prediction models;

this approach is called the supervised learning approach and it is popular in the area of software fault prediction

[6-10]. In contrast, unsupervised approaches such as clustering can be employed for quality assessment when data

are unlabeled [11-13]. Clustering algorithms consider a set of similar entities as a group based on specific features

and then a qualified software engineering expert [14] can label clusters as faulty or non-faulty based on the

characteristics of the data inside each cluster. However, finding a qualified expert is a potentially difficult task [14].

To overcome this problem, some researchers [13, 15-17] use rule conditions and/or thresholds for quality metrics

such as line of code, cyclomatic complexity, total number of operands, and total number of operators, provided by

Integrated Software Metrics, Inc. (ISM) [18] for labeling the clustered groups as including faulty or non-faulty

modules. The key limitation for such an approach is the existence of variations in metrics threshold values,

thresholds intervals, and rules conditions, which greatly affect the module labeling results. Typically, vagueness

and fuzziness in metrics threshold values and built rules are noticed, which potentially prevents the gathering of

certain results for the optimal prediction solution. To overcome the fuzziness and uncertainty problem, expert

systems based on fuzzy logic can be considered. To find an optimal solution, it is necessary to account for the data-

base and rule-base sections of the expert system. Although these two sections can be adjusted manually, it is better

to use optimization techniques, such as genetic algorithms, to obtain the optimal results. In this paper, we propose

two models to design optimal data-base and rule-base expert systems. The two models consider the intervals of the

metrics thresholds and the selection of rules for the fault prediction expert system in the absence of faulty data. Our

expert system can be used in both supervised and unsupervised fault prediction modeling. Apart from mentioned

issues, since most new projects do not have historical data, using data from one project to predict defects in another

come to the picture (cross-project prediction), however, most experiments in cross-project defect prediction report

poor performance [19, 20].

Several methods have been proposed by researchers in other engineering areas to develop an optimal knowledge

base of the fuzzy logic expert system. Some of these methods, such as those proposed by Karr [21], NG and Lee

[22], Rao and Pratihar [23], and Vundavilli et al. [24], used genetic algorithms to identify the optimal data-base or

rule-base expert system. In the present study, an expert system based on fuzzy logic is developed to identify the

optimal values of the intervals of the metrics thresholds as well as the optimal rules. Our method allows

practitioners to detect and prioritize modules based on their fault proneness estimations by using simple rules that

Submitted to Elsevier Science 3
are based on software measurement thresholds. We evaluated the performance of the obtained fault prediction

models using seven publicly available datasets [13] including three datasets from a Turkish white-goods

manufacturer that develops embedded controller software and four datasets from the NASA repository. In addition,

we empirically compared the fault prediction abilities of the proposed models with those based on other existing

approaches. The results show that the generated rules can be used to guide testing efforts and improve the quality

of the developed software systems, especially when developers have a limited time frame and budget. More

specifically, the results show that suggested membership intervals and rules obtained from our proposed model can

improve the overall performance of the fault prediction models compared to other existing models in terms of a

false negative rate.

The main contributions of the paper are as follows:

1. Propose two fuzzy expert systems that can predict software fault proneness, especially when the faulty data

are absent or historical data are not available.

2. Propose a set of membership value intervals based on six software measurement metrics as well as a selection

of fuzzy rules by optimizing the fuzzy expert fault prediction model to improve the process of predicting

software faults, Hence, the role of experts become less critical and more supportive.

The paper is organized as follows. Section 2 reviews the related research. The two methods for building fault-

prediction models are presented in Section 3. Section 4 reports and discusses an empirical evaluation study. Section

5 discusses validity threats to the empirical study. Finally, Section 6 concludes the paper and outlines possible

future work.

2. Related Research

In this section, we summarize and discuss relevant research in the area of fault-proneness prediction. In addition,

we provide a brief overview for two research topics that are considered in this paper for building fault prediction

models, including fuzzy profile development and genetic algorithms.

2.1. Overview of Relevant Work

Different techniques have been used for software fault prediction, such as neural networks [25], naïve Bayes

[26], logistic regression [27], case-based reasoning [28], and the artificial immune recognition system algorithms

in [3, 29-31]. As we studied the research papers, we found that most papers concentrated on supervised approaches;

however, there are lesser studies related to semi-supervised and unsupervised learning in the field of software fault

prediction, despite their importance and necessity. Thus, in this section, the few available semi-supervised and

unsupervised studies on software fault prediction are reviewed.

Predicting fault-prone and non-fault-prone modules in the absence of faulty data is usually done based on one

of the following methods:

Submitted to Elsevier Science4
1. Cluster the data and ask the expert to create a prediction based on statistical information about the data

[1, 14, 32].
2. Cluster the data and use metrics thresholds provided by authorized companies to decide on the label

of the data [13, 15, 16].
3. Use metrics thresholds provided by authorized companies to decide on the label of the data [15, 16].

Studies using these three methods are summarized and discussed as follows. Zhong et al. [14, 32] employed the

clustering technique, k-means and neural-gas, with expert assistance, to build the model using KC2 datasets from

NASA. Experts analysed the cluster fault proneness using statistical data provided by each cluster. Zhong et al.

[14, 32] repeated their experiments on a large dataset from NASA, JM1. From both studies, they concluded that

the neural-gas performed slightly poorer for JM1 and only slightly better for KC2 than k-means, considering the

overall error rate as part of performance evaluation metrics. However, their approach depends on the availability

of a software quality expert with at least 15 years of experience as they claimed, and the procedure cannot be fully

automated as a result.

A constraint-based semi-supervised clustering model was proposed by Seliya and Khoshgoftaar [1], which used

quality experts to identify clusters’ fault proneness in an iterative manner. Six NASA datasets were used to evaluate

the model performance based on information obtained during the semi-supervised approach using the largest

dataset known as JM1. The clustering was applied to classify modules in several other remaining datasets. They

concluded that their semi-supervised proposed model could make better predictions compared with unsupervised

approaches. Their model also depends on the availability of software quality experts and therefore cannot be fully

automated.

Catal et al. [15] employed clustering and software measurement metrics threshold values for building fault

prediction models. They claimed that they could minimize the need for experts’ assistance in identifying fault-

prone modules from non-fault-prone modules. They proposed two prediction models. The first one is simply

comparing the module’s metrics with the corresponding metrics threshold values. However, in the second method,

all modules inside the dataset were initially clustered into 20 groups using k-means, and the one-stage approach

was performed using a representative of each cluster against the metrics threshold values. Their assumption for

labeling the modules as faulty was that at least one metric of the representative module needed to be higher than

the corresponding metrics threshold value. Because identifying the number of clusters was one of the model’s

drawbacks, Catal et al. [16] used x-means clustering to address the issue. They conducted the experiment on the

same dataset as a Turkish white-goods manufacturer that developed embedded controller software [4]. They stated

that their model could be automated; however, the accuracy of their proposed model still does not meet

expectations. In addition, using a fixed condition for considering the fault proneness of the module is highly

dependent on the nature of the dataset. Because they evaluated their models based on only three small datasets, the

model cannot be generalized to all datasets.

The quad tree-based k-means (QDK) method proposed by Bishnu and Bhattacherjee [13] was one the recent

models that is used for fault prediction. First, the initial cluster centres were identified using quad trees to improve

the k-means algorithm. Furthermore, the quad tree-based approach was employed for the fault-prediction process.

Both the QDK model and Catal et al. [15] used same metrics threshold values, datasets, and performance evaluation

Submitted to Elsevier Science 5
metrics. They claimed that QDK could perform as well as the k-means algorithm and well-known supervised

approaches namely, the linear discriminate analyses and naive Bayes. QDK also outperformed two models

proposed by Catal et al. [15]. However, the QDK-based approach has limitations, such as deciding about the best

cluster number. Second, similar to the Catal et al. [15] model, they both used small datasets to evaluate their models,

which cannot be generalized to all industrial datasets. Finally, the model cannot be automated due to its strict

dependency on the users.

The NSGLP method proposed by Zhang et al. [33] used graph based semi-supervised learning technique which

employed Laplacian score sampling strategy for the labeled defect-free modules. Their method has three phases; a

class-balance labeled training dataset is constructed at first and then a nonnegative sparse algorithm is used to

compute the nonnegative sparse weights of a relationship graph that serve as clustering indicators. Lastly, a label

propagation algorithm is employed on the non negative sparse graph to iteratively predict the labels of unlabeled

software modules. They stated that NSGLP outperforms several representative state-of-the-art semi-supervised

software defect prediction methods, however, the accuracy of their proposed model still could be improved and

they used 21 method-level metrics. In addition, NSGLP may not perform well when only few labeled data is

available [34].

Jiang et al. [35] claimed that they proposed a new model to overcome the main two challenges in the area of

software fault prediction which are difficulty to collect a large amount of labeled training data and the problem of

imbalanced data set (fewer defective modules compared to defect-free modules). They proposed a semi-supervised

learning approach named ROCUS, which used random committee as the ensemble of classifiers and under-

sampling as the class-imbalance learning technique. Jiang et al. stated that ROCUS works better than those semi-

supervised learning methods that ignore the class-imbalance nature of the task and a class-imbalance learning

method that does not make effective use of unlabeled data. This method also has limitation similar to those

mentioned in [33].

FTF is another proposed method by Lu et al. [36] which used random forest as the base supervised learner, and

the self-training algorithm is a variant of the original Yarowsky’s algorithm. In the FTF algorithm, a base

supervised learner is iteratively trained from both labeled and unlabeled data until some stopping criterion is

met.They reported that semi supervised learning improves fault prediction only if the number of initially labeled

software modules exceeds 5%. FTF method limitations are same as the ones reported in [33, 35].

Apart from the mentioned related works, there are other research papers, which proposed semi-supervised

learning method but applied it on different sets of datasets. Li et al. [37] proposed CoForest method based on a

sample and the remaining un-sampled modules. They also proposed another semi-supervised learning method

called ACoForest, which can actively select several informative un-sampled modules for testing while

automatically exploiting the remaining un-sampled modules for better performance. Lu et al. [38] proposed active

learning as a way to automate the development of models which improve the performance of defect prediction

between successive releases (three successive versions of Eclipse).

As mentioned before, managing prediction methods using unlabeled data is possible with the help of clustering

and software experts or metrics thresholds. However, as reviewed previously, each has its own problems.

Submitted to Elsevier Science6
Therefore, we designed and developed our automatic hybrid fuzzy expert prediction model to overcome the above

mentioned problems, especially the problem that occurs when module labels can be changed based on metrics

threshold value intervals, and the results vary by changing the rule conditions. In fact, considering the fixed values

for thresholds and rule conditions is not the optimal solution. Existing fuzziness in metrics threshold value intervals

and rules lead us to use an expert system based on fuzzy logic, which will be explained in detail later in this paper.

It should be mentioned that, some other studies employed fuzzy logic based approach for fault prediction [39-

41]; however, all of them used other measurement metrics such as object oriented metrics and hence, they cannot

be compared with our model.

2.2. Fuzzy Profile Development

Fuzzy logic by Zadeh [42] was introduced based on multi-valued logic proposed by Lukasiewicz [43, 44]. A

fuzzifier, fuzzy rules, fuzzy inference engine, and defuzzifier are four main components of any fuzzy logic system.

Linguistic variables and membership functions are employed to convert input crisp values into a fuzzy set, which

is called the fuzzification step. Fuzzy rules are generated after the fuzzification step is finished. A fuzzy rule has

the same structure as an IF–THEN rule, which is presented in the rule-base. An inference engine, which is a set of

rules defined in the fuzzy rule-base, is used as the basis for interpreting and employing reasoning fuzzy outputs

that are generated. The defuzzifier maps the fuzzy sets to a single number as the output.

In other words, in a fuzzy classification approach, a collection of n data objects (x(1), x(2), … , x(n) is represented

by a set of m attributes x1
(n), x2

(n), … , xm
(n). Each attribute in x(n) shows a set of t discrete linguistic variables

LV(xm
(n)) = {LVm1, LVm2, … ,LVmt}. Each input vector is classified into p different fuzzy sets, which are shown by

FS1,FS2, …, FSp. The membership function µFS(i)(x(j)) shows the degree to which x(j) belongs to FSi. In addition,

the membership value µLV(i)(xq
(j)) depicts the degree to which attribute q of input vector jthx belongs to linguistic

variable i (Please refer to Eqs. 1 and 2).

The knowledge section of a fuzzy system consists of two parts: the data-base and rule-base [45]. The data-base

part addresses the partitioning of the input space and the determination of the membership functions. According to

the literature reviews, there are many ways to determine the membership functions. Some researchers classified

the membership functions into four main categories, which are subjective evaluation and elicitation, converted

frequencies and probabilities, physical measurements, and ad-hoc forms and methods [46, 47]. In subjective

evaluation and elicitation, fuzzy sets can be determined by certain elicitation procedures, which are usually

provided by the experts in the problem area. In converted frequencies and probabilities, membership functions are

constructed based on the information probability curves and frequency histograms. Physical measurements use

unique measurements of the features for defining membership functions. In the learning and adaptation approach,

the membership functions of fuzzy sets can be learned and adapted from a given set of functions. Some other

researchers [48, 49] categorized this method into three main sections: first, subjective evaluation and elicitation,

including measurement-theoretic approaches [50], intuition-based approaches [51], and probabilistic approaches

[52]; second, heuristic methods and parameterized functions [48]; and third, estimation methods using synthetic

Submitted to Elsevier Science 7
and real datasets, including neural network techniques [53] and curve fitting methods [54]. In our experiment,

which will be described in Section 5.3, we used a subjective evaluation and elicitation approach.

There are two major approaches for implementing a fuzzy logic system (FLS): the Mamdani and Assilian [55,

56] and Takagi and Sugeno [57] approaches. The consequent part of the rules in Takagi and Sugeno FLS are not

fuzzy, whereas in Mamdani and Assilian, the fuzzy and the fuzzification process is also needed. The Mamdani and

Assilian rule-base part, along with Takagi and Sugeno’s, are represented in Eqs. 1 and 2, respectively.

IF (x1
(i) is LV1

(i)) AND (x2
(i) is LV2

(i)) AND… AND (xk
(i) is LVk

(i)) THEN(FS is FSk) (1)

IF (x1
(i) is LV1

(i)) AND (x2
(i) is LV2

(i)) AND … AND (xk
(i) is LVk

(i)) THEN y =f(x) (2)

As also explained at the beginning of this section, x1
(i),x2

(i), ..., xk
(i) are casual factors and FS is a

decision. LV1
(i), LV2

(i), ... LVk
(i) are fuzzy sets representing the kth rule and FSk is the kth rule of fuzzy set. In other

word, LV1
(i), LV2

(i), ... LVk
(i) and are represent linguistic terms. In Eq. 2, y is defined by a function 𝐹𝑆𝑘 (𝑓(𝑥) = 𝑎0

+ + , that could be constant (0/1). To show how our problem fits to Eq. 2, one rule could + 𝑎1𝑥1 a2x2 … + anxn)

be written as follows:

IF (LOC is L) AND (CC is L) AND (UOPR is H) … AND (TOPND is L) THEN Fault = 0

Or

IF (LOC is H) AND (CC is H) AND (UOPR is L) … AND (TOPND is H) THEN Fault = 1

Fuzzy rules are generated for each fuzzy partition; the number of these rules is equal to that of the fuzzy

partitions. For example, in the case of a four-input and single output fuzzy system with 3 linguistic partitions for

each input, 81 rules are generated. There are different automatic and manual ways of generating the rules. Fuzzy

rules can be extracted through heuristic procedures, decision trees, neuro-fuzzy techniques, genetic algorithms,

rough set theory, and so on. In general, the required knowledge about defining membership functions as well as

rule induction can be gathered from experts, databases, course materials, and flow diagrams.

2.3. Genetic Algorithm

Genetic algorithm (GA) is a population-based algorithm [58] that is considered one of the meta-heuristic

algorithms. The GA learning process is similar to a competition among the population of all candidates in a problem

solution. The GA goal is to identify the best chromosome along with the best grouping based on its fitness value

while applying the best fitness chromosome. The decision as to whether any chromosome will contribute to the

next generation of the solution is made based on the value of the fitness function.

Submitted to Elsevier Science8
GA was inspired by the Darwinian theory of evolution using operators such as population, mutation and

crossover to transform a population of solutions into a new population. The population is a collection of candidate

solutions that are generated in the first step of the algorithm. To decide on the selection of the best solution, the

fitness function is employed. The number of solutions is selected based on the fitness function values during the

selection process. The selected solutions (individuals) are used in the breeding (or crossover) process based on

their fitness values to produce two new individuals. In each generation, an individual can be mutated, which results

in small changes in the individuals.

After each round of simulation, the goal is to identify how close the M new solutions are to the overall goal and

delete a specific number of the worst solutions. This step was done based on analysing the fitness value, which is

calculated from the fitness function that results from each solution. Eq. 3 shows the sample fitness of GA (MSE),

where N is the total number of training sets, and and show actual and predicted values, respectively, for 𝑎𝑐𝑡𝑖 𝑝𝑟𝑒𝑑𝑖

the it training sample.

(3)fitness =
1
N∑N

i = 1(acti ‒ predi)2

3. Proposed Methods

In the present study, we used Takagi and Sugeno’s approach [57] of FLS to model the fault prediction process

that is based on six inputs and one output. The y part of Eq. 2 is constant (0 or 1), which represents the faultiness

or non-faultiness of the program module. The line of code (LOC), cyclomatic complexity (CC), unique number of

operands (UOPRD), unique number of operators (UOPR), total number of operands (TOPRD), and total number

of operators (TOPR) are considered as input parameters. We considered these six metrics because their empirically-

based thresholds are provided by Integrated Software Metrics, Inc. (ISM) [18] and because they are considered in

similar studies (i.e., [4, 7]), which allows for a result comparison. Only two linguistic variables are considered for

each of the inputs, which are Low and High. The shape of the membership functions is considered trapezoidal.

Furthermore, the faultiness or non-faultiness of the input module is considered an output. The schematic diagram,

which shows the relationship between the inputs and outputs of the proposed system, is shown in Fig. 1.

This paper presents two methods – Method 1: Implementation of a manually designed FLS. Method 2:

Adjusting the rule-base and data-base of the FLS with genetic algorithm (GA), which is explained below.

Fig.1.Input and output variables of the fault prediction process

Submitted to Elsevier Science 9
3.1. Method 1: Implementation of Manually Designed Fuzzy Logic System (FLS)

Based on expert opinions, user expectations, software requirements, records of existing field data from a

previous release or similar system [59], and metrics thresholds, a linguistic variable can be determined. Note that

the membership function distributions and rule-base of the fuzzy logic system are developed with experts

assistance, a literature review [3], and numerous trial and error processes. In this paper, we used method-level

metrics thresholds. Menzies et al. [26] claimed that useful software measurements metrics for software fault

prediction are method-level metrics [60], and knowledge about their corresponding threshold values can be found

in both the literature and the predictive tool documentation provided by the integrated software metrics group [18]

(Refer to Table 1).

Because there are two linguistic variables for each input, a total of 64 (i.e.,) rules need to be accounted for 26

initially for the manually constructed FLS. For visualization purposes, the membership functions and fuzzy profiles

of all selected input/output variables are shown in Fig. 2. The half-base widths, two for each input variable A1, A2,

B1,B2, C1, C2, D1, D2, E1, E2, F1, and F2 of trapezoidal membership function distributions are all decided based

on literature reviews, expert advice, and a number of tests. The manually constructed system was built based on

different training datasets and was tested with other unseen datasets. The overall structure of Method 1 is shown in

Fig. 3. The manually developed rule-base for the fault prediction process is given in Appendix A as well.

Table 1: Description of the parameters

No Parameter description Notations Low High Threshold values

1 Line of code LOC 40 80 65
2 Cyclomatic complexity CC 8 15 10
3 Unique number of operands UOPND 15 35 25
4 Unique number of operators UOPR 25 60 40
5 Total number of operands TOPND 110 145 125
6 Total number of operators TOPR 50 90 70

Submitted to Elsevier Science10

Fig. 2. Manually defined membership function distribution of the input-output variables

Submitted to Elsevier Science 11
As shown in Fig. 3, building the FLS model starts with defining the rules and membership function intervals

using the threshold values provided by Integrated Software Metrics, Inc. (ISM) [18]. The membership function’s

intervals as well as the rules’ conditions have been continuously changed based on the trained datasets in order to

show the improved performance results using the performance evaluation criteria listed in section 4.2.

Fig. 3. Process steps in Method 1 (FLS)

Submitted to Elsevier Science12
3.2. Method 2: Adjusting the Rule-base and Data-base of the Fuzzy Logic System with Genetic Algorithm

(GA_FLS)

In the second method, the manually constructed FLS containing the data-base and rule-base parts are both

optimized by using the genetic algorithm. To apply a genetic algorithm, binary coding, a steady-state selection,

uniform crossover, and a bitwise mutation are used. Each chromosome includes information represented by A

through F values (refer to Fig. 2) of all input values, followed by the rule values as shown below. In addition, the

following genetic algorithm parameters are found to be sufficient for giving the best results. The crossover and

mutation probability are considered 0.6 and 0.005, respectively. Moreover, the population size is set to 150, and

50 is assigned for the maximum number of iterations.

The length of the chromosome is considered to be 184, which contains 10 bits for each A through F value of

six inputs, which has a total of 120 bits, followed by 64 bits in which each one represents the presence or absence

of each rule. For optimization purposes, the suitable ranges of variation for the A through F values are decided

after careful study, and the initial ranges are shown in Table 2 for each input value. With this method, good rules

are also identified in the rule-base. The overall structure of Method 2 is shown in Fig. 4.

Table 2: Initial base values (A through F) for optimization.

Representative
letters

Value ranges Representative
letters

Value ranges

A1 20 to 50 D1 15 to 35
A2 50 to 100 D2 35 to 75
B1 5 to 10 E1 80 to 110
B2 10 to 25 E2 110 to 150
C1 10 to 20 F1 35 to 60
C2 20 to 40 F2 60 to 100

As shown in Fig. 4, the process of building GA_FLS starts by generating the binary string, including

membership values and rules, by defining the membership ranges using Table 2, which are selected based on

threshold values provided by Integrated Software Metrics, Inc. (ISM) [18]. In the next stage, the expert system is

built using the fuzzy logic system and genetic algorithm. The performance of the model is calculated based on the

fitness function and is evaluated using performance metrics. If the performance is not acceptable, the best binary

string based on the fitness function is selected, the crossover and mutation operators are applied, and the new expert

system is modeled based on new parameters.

Submitted to Elsevier Science 13

Fig. 4. Process steps in Method 2 (GA_FLS)

One of the key factors of optimizing the performance of the expert system is the way in which the chromosomes

are selected for addition or elimination based on the fitness function value in the GA process. Because obtaining a

good fault prediction model depends on minimizing the two metrics: false positive rate and false negative rate, we

consider the fitness function as a combination of these two factors. The selected chromosomes for addition or

elimination are chosen based on the minimum or maximum of the sum of these factors, respectively. An

explanation about the false positive and false negative rates are presented in section 4.2.

Submitted to Elsevier Science14
4. Experimental Description and Results

4.1. Dataset Selection

The proposed models are evaluated based on seven datasets [61]. Three datasets are from a Turkish white-goods

manufacturer developing embedded controller software, namely, AR3, AR4, and AR5, which we refer to as the

Turkish set. Four more datasets, belonging to NASA software, were also chosen to analyse the performance of the

proposed model through larger datasets. From now on, we will refer to them as NASA sets. Brief explanations

about each of the datasets are presented in Table 3. The measurement metrics presented in the Turkish and NASA

sets are varied; however, only six are chosen for the fault prediction process as the dimensions of the datasets

should be the same as [13, 15] for comparison purposes. Table 4 provides the descriptive statistics for each of the

six metrics being considered, including the minimum, 25% quartile, mean, median, 75% quartile, maximum value,

and standard deviation. According to statistics presented in Table 4, All NASA datasets are having similar range

of LOC, CC, UOPND values in terms of minimum, 25% quartile, mean, median, 75% quartile, and standard

deviation, except for the maximum values, MW1, PC4, KC3, KC1, and CM1 have similar range of values. On the

other side, PC1, PC2, and PC3 values are near each other. P5 and JM1 have similar maximum values since they

are big datasets compared to others. In terms of UOPR, interestingly, MW1 and JM1 have similar maximum range

values as well as KC3, KC2, and PC4. In addition, in terms of TOPR, PC3 and JM1 maximum range values are

similar. Moreover, in TOPND, P5, PC3, and JM1 maximum values are close to each other. In Turkish set, AR3

and AR5 values are more similar. By comparing statistics between NASA and Turkish set, we identified that in

terms of UOPND, TOPR, and TOPND value ranges, all three Turkish datasets are close to KC1 and KC3.

Table 3: Dataset descriptions

Name Description Programming

Language

No. of

modules

Defective

Modules %

AR3 Controller software for washing machine C 63 13%
AR4 Controller software for dishwasher C 107 19%
AR5 Controller software for refrigerator C 36 22%
CM1 NASA spacecraft instrument project C 498 10%
PC1 Flight software for earth-orbiting satellite C 1109 7%
PC2 Flight software for earth-orbiting satellite C 5589 0.4%
PC3 Flight software for earth-orbiting satellite C 1563 10%
PC4 Flight software for earth-orbiting satellite C 1458 18%
PC5 Flight software for earth-orbiting satellite C++ 17186 5%
KC1 Storage management for receiving and

processing ground data
C 1183 29%

KC2 Science data-processing unit of storage
management system used for receiving and
delivering ground data

C++ 522 22%

KC3 Storage management for receiving and
processing ground data

JAVA 458 9%

MW1 Software application from zero-gravity-
combustion experiment

C 403 8%

JM1 A real time predictive ground system C 10883 19%

Table 4: Descriptive Statistics for Each of the Metrics

Submitted to Elsevier Science 15
Name Metrics Minimum 25%

Quartile
Mean Median 75%

Quartile
Maximum Standard

Deviation

LOC 2 9 32.3485 19 33.5 423 44.7190
CC 1 1 5.8109 3 6 96 8.7561
UOPR 1 9 16.082 15 20 72 9.6657
UOPND 0 8 27.8929 17 33 314 35.3258
TOPR 1 19 96.8974 47 105 1261 140.6658

CM1

TOPND 0 11 60.9954 29 69 814 90.7808
LOC 0 8 25.7177 14 29 602 37.2830
CC 1 2 6.0866 3 7 136 9.52084
UOPR 1 9 14.2124 13 18 99 8.1349
UOPND 0 7 22.7938 14 27 538 30.6174
TOPR 1 18 73.8826 37 80.75 1641 118.4475

PC1

TOPND 0 13 56.6374 28 61 1144 91.3591
LOC 0 5 16.746309 10 17 663 33.827024
CC 1 2 4.3637584 3 5 144 6.9375499
UOPR 4 8 11.774497 11 14 46 4.954106
UOPND 1 5 12.451007 8 14 245 17.752573
TOPR 4 13 46.044295 24 44 1198 84.540643

PC2

TOPND 1 9 31.748993 16 31 843 57.898782
LOC 0 10 29.922006 18 33 817 48.039341
CC 1 3 7.273909 4 7 299 12.589538
UOPR 4 11 15.232126 14 18 68 6.413129
UOPND 2 10 27.753018 18 33 768 44.345806
TOPR 5 25 90.471681 46 91 5590 225.77946

PC3

TOPND 2 18 73.264624 36 73 4015 182.94978
LOC 0 6 20.6138546 12 26 210 25.234081
CC 1 1 4.83950617 3 6 94 6.6682565
UOPR 0 7 15.2321263 11 15 38 6.6167031
UOPND 0 5 27.7530176 9 16 601 20.535942
TOPR 0 15 90.4716806 33 73 1687 103.99983

PC4

TOPND 0 9 73.264624 19 44 1403 71.446722
LOC 0 2 9.4085302 2 2 2072 62.373684
CC 1 1 2.0381124 1 1 366 7.6985314
UOPR 0 3 4.4416967 3 6 85 4.2796491
UOPND 0 0 4.4765507 1 3 2241 25.93173
TOPR 0 3 23.857326 3 7 10862 209.57392

PC5

TOPND 0 0 14.668277 1 3 5169 126.34343
LOC 1 10 31.950972 20 41 288 34.974092
CC 1 1 4.0912933 2 5 45 4.7717921
UOPR 0 6 10.501268 10 14 37 5.7671797
UOPND 0 5 14.91885 11 21 120 13.720876
TOPR 0 11 50.282333 27 66 678 61.964496

KC1

TOPND 0 7 30.79459 17 40 428 38.358549
LOC 1 11 52.6736 30 60.75 1275 93.1063
CC 1 2 6.82634 4 7 180 13.2936
UOPR 1 7 11.8383 11 16 47 6.0620
UOPND 0 6 20.3473 15 27 325 25.2700
TOPR 1 12 83.8113 43 94.75 2469 172.284

KC2

TOPND 0 8 54.0389 28 66 1513 108.7268
LOC 0 3 16.919214 7 18 242 26.472066
CC 1 1 3.4475983 1 4 36 4.4929418
UOPR 1 6 10.543668 9 15 31 6.1739246
UOPND 0 2 15.681223 9 19 159 20.973123
TOPR 1 6 59.194323 23 67 857 98.178974

KC3

TOPND 0 3 34.384279 13 36 556 59.918807
LOC 3 9 21.4802 15 28 112 18.6528
CC 1 1 4.6728 3 6 28 4.8226
UOPR 2 13 38.3192 24 53 396 40.1048
UOPND 3 17 48.9920 32 63 493 50.2769
TOPR 2 9 21.3667 16 31 107 16.8949

MW1

TOPND 3 7 11.6279 10 15 44 6.4673

Table 4: Continue

Submitted to Elsevier Science16
Name Metrics Minimum 25%

Quartile
Mean Median 75%

Quartile
Maximum Standard

Deviation

LOC 1 15 46.25084 26 51 3442 80.5752
CC 1 2 6.781933 4 7 470 14.07788
UOPR 0 9 13.81457 13 17 411 10.04654
UOPND 0 8 21.3945 15 25 1026 28.93176
TOPR 0 21 87.58879 44 90 5420 165.4444

JM1

TOPND 0 14 59.78553 30 62.75 3021 109.2398
LOC 3 18 89.2698 57 114.5 670 116.7320
CC 1 1 13.1746 5 16.5 85 17.9178
UOPR 3 6 12.2539 11 16 31 7.0641
UOPND 4 13.5 37.3015 25 51 142 32.7392
TOPR 8 33.5 137.2222 74 166.5 817 163.6271

AR3

TOPND 5 25.5 103.2222 58 124 575 117.4031
LOC 6 21.5 73.7619 50 85.5 324 75.6977
CC 1 2 7.61904 5 10 37 8.1209
UOPR 4 7 11.8412 12 16 28 5.7085
UOPND 4 9.5 23.0952 20 30 94 17.3165
TOPR 9 27 84.3492 57 110.5 401 87.6935

AR4

TOPND 5 17.5 55.8095 37 73.5 261 56.347
LOC 5 20.5 75.8888 42 112.75 477 90.1296
CC 1 1.75 13.7777 7 21 93 18.2069
UOPR 3 6 12.5833 11 16.25 29 7.5114
UOPND 5 14.75 35.0277 26.5 46.5 150 29.8677
TOPR 9 34.75 127.4722 58.5 210.25 699 142.3760

AR5

TOPND 5 28 93.3333 51.5 153.25 482 98.8265

4.2. Performance Measurement Criteria

Four performance evaluation metrics are used for evaluating the proposed model: false positive rate, false

negative rate, overall error rate, and Matthews’s correlation coefficient [62]. After specifying the module labels,

each of the evaluation metrics is calculated based on the confusion matrix. The condition of false negative (FN)

occurs when the actual label is faulty, and we predict that it is non-faulty and false positive (FP) otherwise. We

obtain the condition of true positive (TP) and true negative (TN) when the predicted labels are the same as the

actual labels. The following equations are used to calculate the three evaluation metrics.

 (4)False positive rate (FPR) =
FP

FP + TN

 (5) False negative rate (FNR) =
FN

TP + FN

 (6) Overall error rate =
FN + FP

TP + FN + FP + TN

 (7) MCC =
TP × TN ‒ FP × FN

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

 (8)F ‒ measure =
2 ∗ TP

2 ∗ TP + FP + FN

Submitted to Elsevier Science 17
4.3. Results and Discussion

Initially, the proposed system was developed based on the Mamdani and Assilian [55, 56] approach to show

the degree of faultiness based on five linguistic output variables (very low, low, medium, high, very high).

However, the model should be compared with existing prediction algorithms and other studies. Mamdani’s method

was substituted with Takagi and Sugeno’s [57] to have the output data be either faulty or non-faulty. Two different

methods have been developed to calculate the faultiness of the program modules and improve the prediction

accuracy in the absence of class or module labels.

4.3.1. Method 1: Implementation of Manually Designed Fuzzy Logic System (FLS)

As described in Section 3.1, all A through F values related to each input membership function are decided

manually based on literature reviews and software quality expertise (Fig. 2). After the development of the fuzzy

expert system, the prediction accuracy, with the help of 14 different datasets (NASA set and Turkish set), is

calculated. Table 5 shows the performance evaluation metrics in terms of the FPR, FNR, overall error rate, MCC,

ands. These results will be compared and discussed later in this paper in section 4.3.3.

Table 5: Results of the module fault proneness using Method 1, manual fuzzy logic system (FLS)

Testing dataset Overall error FPR FNR MCC F-measure

CM1 0.2764 0.2603 0.4130 0.2205 0.3930
KC1 0.2506 0.1083 0.6701 0.3428 0.4086
KC2 0.2067 0.1333 0.3979 0.4686 0.4493
KC3 0.1935 0.1962 0.1764 0.4793 0.3218
MW1 0.1680 0.1495 0.3928 0.3125 0.2666
JM1 0.2691 0.1919 0.5623 0.2325 0.4181
PC1 0.2949 0.2078 0.4193 0.2781 0.3255
PC2 0.1000 0.0852 0.7500 0.2901 0.1818
PC3 0.2603 0.2344 0.4402 0.1697 0.3703
PC4 0.2195 0.2013 0.4400 0.2266 0.2031
PC5 0.2819 0.3425 0.1529 0.4705 0.5068
AR3 0.3968 0.4181 0.2500 0.3142 0.4800
AR4 0.2710 0.2758 0.2500 0.3840 0.3710
AR5 0.2500 0.2857 0.1250 0.4969 0.3924

4.3.2. Method 2: Adjusting Rule-base and Data-base of the Fuzzy Logic System with Genetic Algorithm
(GA_FLS)

According to the proposed model presented in Section 3, a genetic algorithm is used to adjust and tune all

membership function distributions and rule-base of the fuzzy expert system. In this section, optimization is done

based on the basic dataset from each of the NASA and Turkish sets. When the optimization is complete, the expert

fuzzy system is tested for prediction accuracy with the rest of the remaining NASA and Turkish datasets. After the

fuzzy expert system is optimized with each of the datasets and the final system is tested with the other remaining

datasets, we observed that the results, after constructing the GA_FLS based on CM1 and AR4 from the respective

NASA and Turkish datasets, show better comparison results with the others.

The prediction results on the tested datasets, based on the expert system that is constructed and optimized with

CM1 and AR4, are presented in Tables 6 and 9. The A through F values, after optimization for CM1 and AR4, are

Submitted to Elsevier Science18
also shown in Tables 7 and 10, respectively. Moreover, the genetic algorithm selected 24 and 20 rules from a

total of 64 rules (refer to Appendix A) based on the CM1 and AR4 optimization, which is shown in Tables 8 and

11, respectively. The rule number in the tables indicates the actual rule number, which is shown in Appendix A.

Furthermore, Figs. 5 and 6 show the mean error performance changes in terms of the FPR, FNR, overall error rate,

MCC, and F-measure during genetic optimization in different generations. The results presented in Tables 6 and 9

will be compared and discussed later in this paper in section 4.3.3.

Note that, some of the datasets such as KC1, KC2, JM1, and PC4 are more defective, hence, as reported in the

result section (Table 5 and Table 6), their FNR values are not as good as other datasets; however, even with this

issue, the GA_FLS model improves the performance of these datasets compared to manual FLS and almost other

models.

Table 6: Results of the module fault proneness using Method 2 on the NASA set (GA_FLS)

Testing dataset Overall error FPR FNR MCC F-measure

CM1 0.2424 0.2403 0.2608 0.3376 0.4102
KC1 0.2331 0.1003 0.6323 0.2997 0.4295
KC2 0.1586 0.1029 0.3283 0.5715 0.6766
KC3 0.2277 0.1901 0.4750 0.2119 0.5384
MW1 0.1481 0.1345 0.3181 0.3771 0.4054
JM1 0.2360 0.1637 0.5311 0.2910 0.4487
PC1 0.1982 0.1875 0.3529 0.2735 0.2959
PC2 0.1152 0.1051 0.5625 0.1199 0.1224
PC3 0.2385 0.2192 0.3877 0.2838 0.4117
PC4 0.2369 0.1798 0.5863 0.1125 0.2800
PC5 0.2841 0.2092 0.4772 0.3078 0.6575

Fig. 5. Error performance changes during

genetic optimization in different

generations using Method 2 (GA_FLS) on

CM1

As shown in Figs. 5 and 6, the FNR value in the optimization, based on CM1 from the NASA set, dramatically

decreases, whereas the FPR and overall error rate remains approximately constant. All evaluation performance

metrics are decreased based on AR4 from the Turkish set.

Submitted to Elsevier Science 19
The reason we did not optimize the expert system based on the other systems in the Turkish set, including

AR3 and AR5, is that they have very small data populations (i.e.,36 and 63, respectively).

Table 7: Base values (A through F) after optimization based on CM1

Representative
letters

Value
ranges

Representative
letters

Value
ranges

A1 21 D1 21
A2 69 D2 58
B1 6 E1 98
B2 10 E2 177
C1 18 F1 48
C2 32 F2 63

Table 8: Results of optimized rule-base of the fuzzy logic system obtained using Method 2 (GA_FLS)
on the CM1 from NASA set, “L” Denotes “Low”, “H” Denotes “High”

Rule LOC CC UOPR UOPND TOPR TOPND Fault Rule LOC CC UOPR UOPND TOPR TOPND Fault

8 H H L L L L 0 32 H L L L H H 1
10 H L L H L L 0 33 L H H H L L 1

13 L H H L L L 0 36 L H L H H L 1

14 L H L H L L 0 37 L H L H L H 1

18 L L H L H L 0 38 L H L L H H 1

22 L L L L H H 0 43 H H H H L L 1

23 H H H L L L 1 48 H H L H H L 1

24 H H L H L L 1 49 H H L H L H 1

26 H H L L L H 1 50 H H L L H H 1

27 H L H H L L 1 56 L H L H H H 1

28 H L H L H L 1 62 H L H H H H 1

29 H L H L L H 1 64 H H H H H H 1

Table 9: Results of the module fault proneness using Method 2 on the Turkish Set (GA_FLS)

Testing dataset Overall error FPR FNR MCC F-measure

AR3 0.3161 0.4250 0.3428 0.3076 0.4285
AR4 0.2065 0.2069 0.2912 0.4198 0.5490
AR5 0.1875 0.2083 0.1250 0.5962 0.7000

Submitted to Elsevier Science20
Fig. 6. Error performance changes during

genetic optimization in different generations

using Method 2 (GA_FLS) on AR4

Table 10: Base values (A through F) after optimization based on AR4

Representative
letters

Value
ranges

Representative
letters

Value
ranges

A1 20 D1 31
A2 84 D2 58
B1 8 E1 126
B2 19 E2 144
C1 19 F1 42
C2 36 F2 95

Table 11: Results of optimized rule-base of the fuzzy logic system obtained using Method 2 (GA_FLS)
on the AR4 from the Turkish set, “L” Denotes “Low”, “H” Denotes “High”

Rule LOC CC UOPR UOPND TOPR TOPND Fault Rule LOC CC UOPR UOPND TOPR TOPND Fault

1 L L L L L L 0 37 L H L H L H 1
3 L H L L L L 0 38 L H L L H H 1

7 L L L L L H 0 39 L L H H H L 1

10 H L L H L L 0 42 L L L H H H 1

20 L L L H H L 0 43 H H H H L L 1

23 H H H L L L 1 45 H H H L L H 1

28 H L H L H L 1 55 L H H L H H 1

29 H L H L L H 1 57 L L H H H H 1

34 L H H L H L 1 63 L H H H H H 1

36 L H L H H L 1 64 H H H H H H 1

4.3.3. Discussion and Comparison

Two proposed fault prediction methods based on fuzzy logic have been proposed, tested, and compared based

on mentioned evaluation metrics with 14 different datasets. Two sets of comparison have been explored, which are

Submitted to Elsevier Science 21
different as seen in the types of datasets (NASA/Turkish) and according to the available research studies.

Moreover, the performance of our proposed model compared with selected well-performing supervised models

based on the literature reviews [3, 63, 64] which are the random forest (RF), naive Bayes (NB), and logistic

regression (LR).

In the first comparison, the results based on the NASA sets are compared with other existing approaches

proposed by other researchers namely, the one (CO) and two-stage (CT) approaches [15], and three supervised

learning algorithms random forest (RF), naive Bayes (NB), and logistic regression (LR). In the second comparison

and in two more related articles, experiments were conducted based on the Turkish sets. These two additional

methods are the quad tree-based k-means approach (QDK) [13] and the two-stage x-mean approach (CX) [16]. The

explanation for each of these methods was given in section 2.1. For simplicity, we refer to the first and second

proposed methods as FLS and GA_FLS. The visual representation of the comparison in the NASA and Turkish

sets are shown in Figs.7 and 8, respectively.

The results of applying Wilcoxon test to the predictors’ overall error rate are shown in Table 11 and Table 12.

Since the p-value obtained from the Wilcoxon signed rank test are less than 0.05 for all the comparisons, the

existence of a significant difference between the GA_FLS predictions and those achieved by the other predictors

is substantially proved.

Fig. 7. Comparison results based on the NASA set

Submitted to Elsevier Science22

Fig. 7. Continue

Submitted to Elsevier Science 23
Table 11: P-values of Wilcoxon test on overall error rate (GA_FLS vs. the other predictors) in NASA set

FLS CO CT NB RF LR

0. 04 0.04 0.04 0.02 0.02 0.02
.

Based on the results reported in Fig. 7, the FNR value for GA_FLS is better than FLS and the other existing

methods except for KC3, and PC5. For all the datasets, GA_FLS and FLS are comparable with RF, NB, and LR.

FPR and the overall error rate values are not very different from FLS and GA_FLS. Although the FPR values in

NB, RF, and LR are very low in all the datasets, the FNR values are very high, which makes the model unstable

and unreliable. GA_FLS may not outperform the other methods in terms of overall error rate and FPR, but it gives

balanced results with convincing performance while decreasing the FNR rate dramatically. Erroneous predictions

of modules, which are misclassified, as non-faulty (FNR) is worse than incorrectly predict them as faulty. This is

because a higher FNR value denotes that many fault-prone modules cannot be identified [16], which is critical. As

shown in Fig. 7, the very low FPR value using NB, RF, and LR has a positive impact on the overall error rate as

well; however, these results are not balanced and cannot be generalized.

Fig. 8. Comparison results based on the Turkish set

Table 12: P-values of Wilcoxon test on overall error rate (GA_FLS vs. the other predictors) in Turkish set

FLS QDK CO CT CX NB RF LR

0. 04 0.04 0.04 0.04 0.04 0.02 0.02 0.02
.

Submitted to Elsevier Science24
According to the results presented in Fig. 8, the overall error rate and FPR values for GA_FLS are better than

manually designed FLS, QDK, CO, CT, and CX for AR3, aside from NB, RF, and LR. The overall error rate and

FPR values using GA_FLS are also better than those for all of other considered approaches for AR4 and AR5,

except for QDK, NB, RF, and LR. The performance of the GA_FLS using the FNR value for AR3 and AR5 are

almost similar for all models; for AR4, it is better than manually designed FLS, QDK, NB, and RF and is the same

as CO and CT. In AR4, the FNR value for GA_FLS is less than the values of all models except QDK. According

to Fig. 8, the overall error rate using NB, RF, and LR are extremely small, especially in AR3 and AR4, which is

due to the positive impact of a very small FPR. However, as explained earlier, the model performance cannot be

solely decided based on one parameter and should be analysed based on the number of wrongly identified fault-

prone modules and non-faulty modules.

For more comparison, the results of the proposed GA_FLS model is also compared with other papers which

used NASA sets with F-measure as an evaluation metric namely, the (NSGLP)approach [33], iterative semi-

supervised approach-fitting the fits (FTF) [36], and random committee with under-sampling (ROCUS) [35]. As

can been seen in Table 13, GA_FLS outperformed almost all other methods except for KC1, PC1, and PC4 which

NSGLP performed better.

Table 13: Comparison between GA_FLS and other method’s F-measure rate on NASA set

Testing dataset GA_FLS FLS FTF ROCUS NSGLP

CM1 0.4102 0.3930 0.30 0.33 0.37
KC1 0.4295 0.4086 0.37 0.41 0.44
KC3 0.5384 0.3218 0.33 0.36 0.40
MW1 0.4054 0.2666 0.22 0.23 0.34
JM1 0.4487 0.4181 0.38 0.44 0.43
PC1 0.2959 0.3255 0.23 0.24 0.35
PC3 0.4117 0.3703 0.25 0.26 0.34
PC4 0.2800 0.2031 0.36 0.39 0.49
PC5 0.6575 0.5068 0.45 0.46 0.59

5 Threats to Validity

In all research-based studies, researchers may encounter threats to validity. In this paper, three types of threats

to validity, which are threats to internal validity, threats to evaluating the validity, and threats to external validity,

are considered. Each is explained in the following sections.

5.1 Threats to Internal Validity

Usually in fault prediction studies, public datasets are used for the purpose of generalization. In such cases,

researchers do not know much about the process of preparing these datasets as well the tools that are used. This

problem cause the problem of internal validity could be a threat to internal validity. In addition, using only six

software measurement metrics can be another threat as the prediction performance may be improved if more

measurement metrics are employed. Furthermore, one could argue that more advanced and current software metrics

Submitted to Elsevier Science 25
should be used such as object oriented and agile software metrics to make the prediction model more applicable

in real development practice.

5.2 Threats to Evaluate Validity

The evaluation process is very important for identifying whether any model has performed well or not. Threats

to evaluating validity have two sections: specifying the proportion of test data to train data in the dataset and

determining the performance evaluation metrics.

In specifying the proportion of test data to train data, a very optimistic idea is to consider a part or an entire set

of training data as testing set. In such case, the results do not reflect the real performance of the model. However;

in this paper we followed two approaches, first, we used 10-fold cross validation technique to avoid any bias in the

results and conclusions, and second, we applied the proposed model on number of new similar datasets to minimize

the mentioned problem.

For determining the performance evaluation metrics, we should note that, these measurement metrics must be

carefully selected according to what the study wants to measure otherwise the direction of the study goes wrong.

Although there are other performance measurement metrics, selection of these metrics makes the results

comparable with other prior studies. In fact, we used the FPR, FNR, and overall error rate to compare our results

with those reported in the literature. However, the results could be analysed differently if these evaluation metrics

are changed.

5.3 Threats to External Validity

The most important external threat in experiment-based studies is how the proposed estimation models can be

generalized in the real world. Although two sets of industrial datasets from NASA and Turkish electrical goods

software including 14 datasets containing different population size and defect rates are used for the purpose of

generalization, however, our proposed models should be applied and need to be tested with other industrial datasets

as well. In addition, the datasets of other programming languages, such as Java, can better generalize the obtained

results.

5.4 Threats to Methods Selection Validity

In the current paper, a genetic algorithm was used as GA because it has been widely utilized in prior studies and

it has presented convincing results. One may claim that GA is a slow algorithm; however, time is not an issue in

our problem and this selection does not imply inefficiency of other methods. Since GA has presented an acceptable

performance in many disciplines, we employed it in our proposed model and leave other optimization algorithms

like particle swarm optimization, bee colony, ant colony, and many more for further investigation as future works.

Furthermore, it should be mentioned that methods such as time series are not applicable since the observations are

not collected over time and data values are not obtained at successive times or with equal intervals between them

[65]. NASA and Turkish datasets that were used in this research are not collected as such.

Submitted to Elsevier Science26
5.5 Threats to Construct Validity

The predictors are sensitive to adjustments, alternatives and configurations. This issue must be considered in

the construction process to avoid inefficient prediction models. The fitness function, parent and survival selection,

the type of crossover and mutation operator, crossover and mutation probability, population size, and number of

iterations are choices that may affect the performance of the proposed model. Actually, an exhaustive trial and

error process was conducted to determine the initial parameters and different combination of mentioned parameters

were verified to reach the best structure and to find the most efficient model; however, we may not claim that our

setting adjustments are the best combination.

6 Conclusion and Future Work

Software fault prediction approaches can assist software developers in quality practices and software testing

especially when the delivery of the project is delayed. However, building fault prediction models is very difficult

when there is no information about the label of modules whether they are faulty or not and when there is no

historical data available (cross-project prediction). Building these types of systems can be done using metrics

thresholds, but the results are changed when varying the thresholds intervals and rules conditions. According to the

analysis, fuzziness in threshold values intervals and rules are found. Thus, an expert system based on fuzzy logic

is developed to model this fuzziness. Furthermore, GA is used to tune the rule-base and data-base of the expert

system. GA_FLS is able to predict module fault proneness by identifying the appropriate threshold value intervals

and selection of optimal rules. In this study, the threshold values are only used as initial parameters for expert

systems.

The validation of two models has been performed using 14 industrial datasets. The empirical results have

confirmed the efficiency of the proposed GA_FLS method over the manual FLS and other methods considering

FNR values in all test cases. The performances of the manual FLS and GA_FLS method are found comparable to

other proposed methods, such as random forest, naive Bayes, and logistic regression in most test cases.

Predicting a lower value in FNR means that most fault-prone modules can be detected prior to the system

testing, which is useful for testers and project managers who wish to allocate their time and resources for these

parts when there is a limited period and budget for testing a software project.

In the future, we plan to investigate the performance of the prediction models based on other metaheuristic

algorithms rather than genetic algorithm such as particle swarm optimization and bee colonies. Furthermore, a deep

analysis of other software measurement metrics, such as object-oriented and agile software metrics, will be

performed with the hope of finding proper threshold values as well as accurate rules that can be employed as an

initial parameter in the fuzzy expert system. In addition, use of alternatives linguistic approaches to be introduced

in expert systems as type 2 Fuzzy sets, ordinal linguistic approach, multi-granular linguistic approach will also be

investigated.

Submitted to Elsevier Science 27
Acknowledgements
The authors wish to thank Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-20H04
supported under Ministry of Education Malaysia for the completion of the research.

Appendices:

Appendix A
Manually constructed rule-base of the fuzzy logic system,

 “L” Denotes “Low”, “H” Denotes “High”

Rule LOC CC UOPR UOPND TOPR TOPND Fault Rule LOC CC UOPR UOPND TOPR TOPND Fault

1 L L L L L L 0 33 L H H H L L 1
2 H L L L L L 0 34 L H H L H L 1

3 L H L L L L 0 35 L H H L L H 1

4 L L H L L L 0 36 L H L H H L 1

5 L L L H L L 0 37 L H L H L H 1

6 L L L L H L 0 38 L H L L H H 1

7 L L L L L H 0 39 L L H H H L 1

8 H H L L L L 0 40 L L H H L H 1

9 H L H L L L 0 41 L L H L H H 1

10 H L L H L L 0 42 L L L H H H 1

11 H L L L H L 0 43 H H H H L L 1

12 H L L L L H 0 44 H H H L H L 1

13 L H H L L L 0 45 H H H L L H 1

14 L H L H L L 0 46 H L H H H L 1

15 L H L L H L 0 47 H L H H L H 1

16 L H L L L H 0 48 H H L H H L 1

17 L L H H L L 0 49 H H L H L H 1

18 L L H L H L 0 50 H H L L H H 1

19 L L H L L H 0 51 H L H L H H 1

20 L L L H H L 0 52 H L L H H H 1

21 L L L H L H 0 53 L H H H H L 1

22 L L L L H H 0 54 L H H H L H 1

23 H H H L L L 1 55 L H H L H H 1

24 H H L H L L 1 56 L H L H H H 1

25 H H L L H L 1 57 L L H H H H 1

26 H H L L L H 1 58 H H H H H L 1

27 H L H H L L 1 59 H H H H L H 1

28 H L H L H L 1 60 H H H L H H 1

29 H L H L L H 1 61 H H L H H H 1

30 H L L H H L 1 62 H L H H H H 1

31 H L L H L H 1 63 L H H H H H 1

32 H L L L H H 1 64 H H H H H H 1

Submitted to Elsevier Science28

References

1. Seliya, N. and T.M. Khoshgoftaar, Software quality analysis of unlabeled program modules with
semisupervised clustering. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans, 2007. 37(2): p. 201-211.

2. Dowd, M., J. McDonald, and J. Schuh, The art of software security assessment: Identifying and preventing
software vulnerabilities. 2006: Pearson Education.

3. Catal, C. and B. Diri, Investigating the effect of dataset size, metrics sets, and feature selection techniques
on software fault prediction problem. Information Sciences, 2009. 179(8): p. 1040-1058.

4. Radjenović, D., et al., Software fault prediction metrics: A systematic literature review. Information and
Software Technology, 2013. 55(8): p. 1397-1418.

5. Catal, C., Software fault prediction: A literature review and current trends. Expert systems with
applications, 2011. 38(4): p. 4626-4636.

6. Al Dallal, J., Accounting for data encapsulation in the measurement of object‐oriented class cohesion.
Journal of Software: Evolution and Process, 2015. 27(5): p. 373-400.

7. Al Dallal, J., Incorporating transitive relations in low‐level design‐based class cohesion measurement.
Software: Practice and Experience, 2013. 43(6): p. 685-704.

8. Al Dallal, J., The impact of accounting for special methods in the measurement of object-oriented class
cohesion on refactoring and fault prediction activities. Journal of Systems and Software, 2012. 85(5): p.
1042-1057.

9. Al Dallal, J., Fault prediction and the discriminative powers of connectivity-based object-oriented class
cohesion metrics. Information and Software Technology, 2012. 54(4): p. 396-416.

10. Al Dallal, J. and L.C. Briand, A precise method-method interaction-based cohesion metric for object-
oriented classes. ACM Transactions on Software Engineering and Methodology (TOSEM), 2012. 21(2):
p. 8.

11. Abaei, G. and A. Selamat, Increasing the Accuracy of Software Fault Prediction using Majority Ranking
Fuzzy Clustering. International Journal of Software Innovation (IJSI), 2014. 2(4): p. 60-71.

12. Abaei, G. and A. Selamat. Software fault prediction based on improved fuzzy clustering. in Distributed
Computing and Artificial Intelligence, 11th International Conference. 2014. Springer.

13. Bishnu, P.S. and V. Bhattacherjee, Software fault prediction using quad tree-based k-means clustering
algorithm. IEEE Transactions on knowledge and data engineering, 2012. 24(6): p. 1146-1150.

14. Zhong, S., T.M. Khoshgoftaar, and N. Seliya, Analyzing software measurement data with clustering
techniques. IEEE Intelligent Systems, 2004. 19(2): p. 20-27.

15. Catal, C., U. Sevim, and B. Diri. Clustering and metrics thresholds based software fault prediction of
unlabeled program modules. in Information Technology: New Generations, 2009. ITNG'09. Sixth
International Conference on. 2009. IEEE.

16. Catal, C., U. Sevim, and B. Diri, Metrics-driven software quality prediction without prior fault data, in
Electronic Engineering and Computing Technology. 2010, Springer. p. 189-199.

17. Abaei, G., Z. Rezaei, and A. Selamat. Fault prediction by utilizing self-organizing Map and Threshold. in
Control System, Computing and Engineering (ICCSCE), 2013 IEEE International Conference on. 2013.
IEEE.

18. ISM Integrated Software Metrics, Inc. (ISM), in, INNOVA Commercialization Group. 2013.
19. Rahman, F., D. Posnett, and P. Devanbu. Recalling the imprecision of cross-project defect prediction. in

Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. 2012. ACM.

20. Zimmermann, T., et al. Cross-project defect prediction: a large scale experiment on data vs. domain vs.
process. in Proceedings of the the 7th joint meeting of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of software engineering. 2009. ACM.

Submitted to Elsevier Science 29
21. Karr, C.L. Design of an adaptive fuzzy logic controller using genetic algorithm. in Proc. of the 4th Int.

Conf. on Genetic Algorithm. 1991.
22. Ng, K.C. and Y. Li. Design of sophisticated fuzzy logic controllers using genetic algorithms. in Fuzzy

Systems, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the Third IEEE
Conference on. 1994. IEEE.

23. Rao, A.V.S. and D.K. Pratihar, Fuzzy logic-based expert system to predict the results of finite element
analysis. Knowledge-Based Systems, 2007. 20(1): p. 37-50.

24. Vundavilli, P.R., et al., Fuzzy logic-based expert system for prediction of depth of cut in abrasive water
jet machining process. Knowledge-Based Systems, 2012. 27: p. 456-464.

25. Thwin, M.M.T. and T.-S. Quah, Application of neural networks for software quality prediction using
object-oriented metrics. Journal of systems and software, 2005. 76(2): p. 147-156.

26. Menzies, T., J. Greenwald, and A. Frank, Data mining static code attributes to learn defect predictors.
IEEE transactions on software engineering, 2007. 33(1): p. 2-13.

27. Mauša, G., T.G. Grbac, and B.D. Bašić. Multivariate logistic regression prediction of fault-proneness in
software modules. in MIPRO, 2012 Proceedings of the 35th International Convention. 2012. IEEE.

28. El Emam, K., et al., Comparing case-based reasoning classifiers for predicting high risk software
components. Journal of Systems and Software, 2001. 55(3): p. 301-320.

29. Catal, C. and B. Diri. Software fault prediction with object-oriented metrics based artificial immune
recognition system. in International Conference on Product Focused Software Process Improvement.
2007. Springer.

30. Catal, C. and B. Diri. Software defect prediction using artificial immune recognition system. in
Proceedings of the 25th conference on IASTED International Multi-Conference: Software Engineering.
2007. ACTA Press.

31. Catal, C. and B. Diri. A fault prediction model with limited fault data to improve test process. in
International Conference on Product Focused Software Process Improvement. 2008. Springer.

32. Zhong, S., T.M. Khoshgoftaar, and N. Seliya. Unsupervised Learning for Expert-Based Software Quality
Estimation. in HASE. 2004. Citeseer.

33. Zhang, Z.-W., X.-Y. Jing, and T.-J. Wang, Label propagation based semi-supervised learning for
software defect prediction. Automated Software Engineering, 2017. 24(1): p. 47-69.

34. Li, Z., et al., Cost-sensitive transfer kernel canonical correlation analysis for heterogeneous defect
prediction. Automated Software Engineering, 2017: p. 1-45.

35. Jiang, Y., M. Li, and Z.-H. Zhou, Software Defect Detection with R ocus. Journal of Computer Science
and Technology, 2011. 26(2): p. 328-342.

36. Lu, H., B. Cukic, and M. Culp. An iterative semi-supervised approach to software fault prediction. in
Proceedings of the 7th International Conference on Predictive Models in Software Engineering. 2011.
ACM.

37. Li, M., et al., Sample-based software defect prediction with active and semi-supervised learning.
Automated Software Engineering, 2012. 19(2): p. 201-230.

38. Lu, H., E. Kocaguneli, and B. Cukic. Defect prediction between software versions with active learning
and dimensionality reduction. in Software Reliability Engineering (ISSRE), 2014 IEEE 25th International
Symposium on. 2014. IEEE.

39. Erturk, E. and E.A. Sezer, Software fault prediction using Mamdani type fuzzy inference system.
International Journal of Data Analysis Techniques and Strategies, 2016. 8(1): p. 14-28.

40. Vir, R. and P. Mann, A hybrid approach for the prediction of fault proneness in object oriented design
using fuzzy logic. journal of academia and industrial research, 2013: p. 661-666.

41. Yadav, H.B. and D.K. Yadav, A fuzzy logic based approach for phase-wise software defects prediction
using software metrics. Information and Software Technology, 2015. 63: p. 44-57.

42. Zadeh, L.A., Fuzzy sets, in Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh.
1996, World Scientific. p. 394-432.

43. Adams, E.S. and D.A. Farber, Beyond the formalism debate: expert reasoning, fuzzy logic, and complex
statutes. Vand. L. Rev., 1999. 52: p. 1241.

44. Gaines, B.R., Foundations of fuzzy reasoning. International Journal of Man-Machine Studies, 1976. 8(6):
p. 623-668.

Submitted to Elsevier Science30
45. Nozaki, K., H. Ishibuchi, and H. Tanaka, A simple but powerful heuristic method for generating fuzzy

rules from numerical data. Fuzzy sets and systems, 1997. 86(3): p. 251-270.
46. Ramík, J., Soft computing: overview and recent developments in fuzzy optimization. Ostravská univerzita,

Listopad, 2001: p. 33-42.
47. Liu, Z.-Q. and S. Miyamoto, Soft computing and human-centered machines. 2012: Springer Science &

Business Media.
48. Medasani, S., J. Kim, and R. Krishnapuram, An overview of membership function generation techniques

for pattern recognition. International Journal of approximate reasoning, 1998. 19(3-4): p. 391-417.
49. Soyer, A., Ö. Kabak, and U. Asan, A fuzzy approach to value and culture assessment and an application.

International Journal of Approximate Reasoning, 2007. 44(2): p. 182-196.
50. Bilgiç, T. and I.B. Türkşen, Measurement of membership functions: theoretical and empirical work, in

Fundamentals of fuzzy sets. 2000, Springer. p. 195-227.
51. Tzvieli, A., Possibility theory: an approach to computerized processing of uncertainty, 1990, Wiley

Online Library.
52. Dubois, D. and H. Prade, The three semantics of fuzzy sets. Fuzzy sets and systems, 1997. 90(2): p. 141-

150.
53. Wilamowski, B., Neural networks and fuzzy systems. The Microelectronic Handbook, 2002.
54. Klir, G.J. and B. Yuan, Fuzzy sets and fuzzy logic: theory and applications. Possibility Theory versus

Probab. Theory, 1996. 32(2).
55. Mamdani, E. and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller.

International journal of human-computer studies, 1999. 51(2): p. 135-147.
56. Mamdani, E.H. and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller.

International journal of man-machine studies, 1975. 7(1): p. 1-13.
57. Takagi, T. and M. Sugeno, Fuzzy identification of systems and its applications to modeling and control,

in Readings in Fuzzy Sets for Intelligent Systems. 1993, Elsevier. p. 387-403.
58. Holland, J.H., Adaptation in natural and artificial systems: an introductory analysis with applications to

biology, control, and artificial intelligence. 1992: MIT press.
59. Kumar, K.S., R.B. Misra, and N.K. Goyal, Development of fuzzy software operational profile.

International Journal of Reliability, Quality and Safety Engineering, 2008. 15(06): p. 581-597.
60. McCabe, T.J., A complexity measure. IEEE Transactions on software Engineering, 1976(4): p. 308-320.
61. PROMISE Promise Software Engineering Repository. 2012.
62. Matthews, B.W., Comparison of the predicted and observed secondary structure of T4 phage lysozyme.

Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975. 405(2): p. 442-451.
63. Hall, T., et al., A systematic literature review on fault prediction performance in software engineering.

IEEE Transactions on Software Engineering, 2012. 38(6): p. 1276-1304.
64. Abaei, G. and A. Selamat, A survey on software fault detection based on different prediction approaches.

Vietnam Journal of Computer Science, 2014. 1(2): p. 79-95.
65. Brockwell, P.J. and R.A. Davis, Introduction to time series and forecasting. 2016: springer.

Graphical Abstract

Submitted to Elsevier Science 31

Fig. 1. Process steps in Method 1 (Fuzzy logic system)

